Skip to main content

Advertisement

Log in

Blood-based biomarkers and stem cell therapy in human stroke: a systematic review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Stroke is one of the main causes of death and disability worldwide. Cell therapy represents a promising therapeutic approach to improve stroke outcome. Measurement of blood-based biomarkers might serve as a proof-of-concept to monitor the mechanisms undergirding these treatments, and such compounds could be used as surrogate biomarkers to monitor the safety and efficacy of cell therapies in the future. Additionally, the measurement of biomarkers that correlate with circulating stem cells in observational studies might be of interest to improve the understanding of how these cells are spontaneously mobilized and carry out their action after stroke. Thus, a systematic review has been herein performed on blood-based biomarkers assessed in stroke patients treated with cell therapy or in observational studies in which circulating stem cells have been measured after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. The burden of Stroke in Europe report. King’s College London for the Stroke Alliance for Europe (SAFE). Brussels, May 11th 2017.

  2. Kalladka D, Muir KW (2014) Brain repair: cell therapy in stroke. Stem Cells Clon Adv Appl 7(1):31–44

    CAS  Google Scholar 

  3. Ma F, Morancho A, Montaner J, Rosell A (2015) Endothelial progenitor cells and revascularization following stroke. Brain Res 1623:150–159

    Article  CAS  Google Scholar 

  4. Ohab JJ, Carmichael ST (2008) Poststroke neurogenesis: emerging principles of migration and localization of immature neurons. Neuroscientist 14(4):369–380

    Article  CAS  Google Scholar 

  5. Detante O, Muir K, Jolkkonen J (2018) Cell therapy in stroke—cautious steps towards a clinical treatment. Transl Stroke Res Translat Stroke Res 9(4):321–332

    Article  CAS  Google Scholar 

  6. Nahhas MI, Hess DC (2018) Stem cell therapy in cerebrovascular disease. Curr Treat Options Neurol 20(11):49

    Article  Google Scholar 

  7. Cunningham CJ, Redondo-Castro E, Allan SM (2018) The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J Cereb Blood Flow Metab 38(8):1276–1292

    Article  Google Scholar 

  8. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    Article  Google Scholar 

  9. Palà E, Bustamante A, Montaner J, Jolkonen J, Hommel M (2018). Blood-based biomarkers and stroke cell therapy in humans: a systematic review. PROSPERO: International prospective register of systematic reviews. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42018118100

  10. Hennemann B, Ickenstein G, Sauerbruch S, Luecke K, Haas S, Horn M et al (2008) Mobilization of CD34+ hematopoietic cells, colony-forming cells and long-term culture-initiating cells into the peripheral blood of patients with an acute cerebral ischemic insult. Cytotherapy 10(3):303–311

    Article  CAS  Google Scholar 

  11. Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M et al (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40(4):1237–1244

    Article  CAS  Google Scholar 

  12. Bogoslovsky T, Spatz M, Chaudhry A, Maric D, Luby M, Frank J et al (2011) Stromal-derived factor-1(alpha) correlates with circulating endothelial progenitor cells and with acute lesion volume in stroke patients. Stroke 42(3):618–625

    Article  CAS  Google Scholar 

  13. Bogoslovsky T, Spatz M, Chaudhry A, Maric D, Luby M, Frank J et al (2011) Circulating CD133+CD34+ progenitor cells inversely correlate with soluble ICAM-1 in early ischemic stroke patients. J Transl Med Engl 9:145

    Article  CAS  Google Scholar 

  14. Paczkowska E, Golab-Janowska M, Bajer-Czajkowska A, Machalinska A, Ustianowski P, Rybicka M et al (2013) Increased circulating endothelial progenitor cells in patients with haemorrhagic and ischaemic stroke: the role of endothelin-1. J Neurol Sci 325(1–2):90–99

    Article  CAS  Google Scholar 

  15. Sepp D, Franz D, Triftshaeuser N, Ott I, Esposito-Bauer L, Feurer R et al (2014) Mobilization of CD133+ progenitor cells in patients with acute cerebral infarction. PLoS ONE 9(3):e70796

    Article  Google Scholar 

  16. Chen Y, Lu B, Wang J, Chen S, Lin Z, Ma X et al (2015) Circulating CD133+ CD34+ progenitor cells and plasma stromal-derived factor-1alpha: predictive role in ischemic stroke patients. J Stroke Cerebrovasc Dis 24(2):319–326

    Article  Google Scholar 

  17. Deng Y, Wang J, He G, Qu F, Zheng M (2018) Mobilization of endothelial progenitor cell in patients with acute ischemic stroke. Neurol Sci 39(3):437–443

    Article  Google Scholar 

  18. Kim SJ, Moon GJ, Cho YH, Kang HY, Hyung NK, Kim D et al (2012) Circulating mesenchymal stem cells microparticles in patients with cerebrovascular disease. PLoS ONE 7(5):e37036

    Article  CAS  Google Scholar 

  19. Shimomura R, Nezu T, Hosomi N, Aoki S, Sugimoto T, Kinoshita N et al (2018) Alpha-2-macroglobulin as a promising biological marker of endothelial function. J Atheroscler Thromb 25(4):350–358

    Article  CAS  Google Scholar 

  20. Massot A, Navarro-Sobrino M, Penalba A, Arenillas JF, Giralt D, Ribó M et al (2013) Decreased levels of angiogenic growth factors in intracranial atherosclerotic disease despite severity-related increase in endothelial progenitor cell counts. Cerebrovasc Dis 35(1):81–88

    Article  CAS  Google Scholar 

  21. Zhang X, Huang Z, Xie Y, Chen X, Zhang J, Qiu Z et al (2016) Lower levels of plasma adiponectin and endothelial progenitor cells are associated with large artery atherosclerotic stroke. Int J Neurosci 126(2):121–126

    Article  CAS  Google Scholar 

  22. Moniche F, Gonzalez A, Gonzalez-Marcos J-R, Carmona M, Pinero P, Espigado I et al (2012) Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke 43(8):2242–2244

    Article  Google Scholar 

  23. Moniche F, Montaner J, Gonzalez-Marcos J-R, Carmona M, Pinero P, Espigado I et al (2014) Intra-arterial bone marrow mononuclear cell transplantation correlates with GM-CSF, PDGF-BB, and MMP-2 serum levels in stroke patients: results from a clinical trial. Cell Transpl 23(1):S57–64

    Article  Google Scholar 

  24. Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K et al (2015) Intravenous autologous bone marrow mononuclear cell transplantation for stroke: Phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev 24(19):2207–2218

    Article  CAS  Google Scholar 

  25. Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D et al (2017) Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 16(5):360–368

    Article  Google Scholar 

  26. Borlongan CV, Glover LE, Tajiri N, Kaneko Y, Freeman TB (2012) The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol 95(2):213–228

    Article  Google Scholar 

  27. Broudy VC (1997) Stem cell factor and hematopoiesis. J Am Soc Hematol 90(4):1345–1364

    CAS  Google Scholar 

  28. Knowles J, Loizidou M, Taylor I (2005) Endothelin-1 and angiogenesis in cancer. Curr Vasc Pharmacol 3(4):309–314

    Article  CAS  Google Scholar 

  29. Esquiva G, Grayston A, Rosell A (2018) Revascularization and endothelial progenitor cells in stroke. Am J Physiol Cell Physiol 315:C664–C674

    Article  CAS  Google Scholar 

  30. Yang Z, Di Santo S, Kalka C (2010) Current developments in the use of stem cell for therapeutic neovascularisation: is the future therapy “cell-free”? Swiss Med Wkly 140:w13130

    PubMed  Google Scholar 

  31. England TJ, Abaei M, Auer DP, Lowe J, Jones DRE, Sare G et al (2012) Granulocyte-colony stimulating factor for mobilizing bone marrow stem cells in subacute stroke: The stem cell trial of recovery enhancement after stroke 2 randomized controlled trial. Stroke 43:405–411

    Article  CAS  Google Scholar 

  32. Li YF, Ren LN, Guo G, Cannella LA, Chernaya V, Samuel S et al (2015) Endothelial progenitor cells in ischemic stroke: an exploration from hypothesis to therapy. J Hematol Oncol 8:33

    Article  Google Scholar 

  33. Maki T, Morancho A, Martinez-San Segundo P, Hayakawa K, Takase H, Liang A et al (2018) Endothelial progenitor cell secretome and oligovascular repair in a mouse model of prolonged cerebral hypoperfusion. Stroke 49:1003–1010

    Article  Google Scholar 

  34. Morancho A, Rosell A, García-Bonilla L, Montaner J (2010) Metalloproteinase and stroke infarct size: Role for anti-inflammatory treatment? Ann N Y Acad Sci 1207:123–133

    Article  CAS  Google Scholar 

  35. Montaner J, Ramiro L, Simats A, Hernández-Guillamon M, Delgado P, Bustamante A et al (2019) Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci 76:3117–3140

    Article  CAS  Google Scholar 

  36. Simats A, García-Berrocoso T, Montaner J (2016) Neuroinflammatory biomarkers: from stroke diagnosis and prognosis to therapy. Biochim Biophys Acta 1862:411–424

    Article  CAS  Google Scholar 

  37. Ramiro L, Simats A, García-Berrocoso T, Montaner J (2018) Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Ther Adv Neurol Disord 11:1–24

    Article  Google Scholar 

  38. Mays RW, Savitz SI (2018) Intravenous cellular therapies for acute ischemic stroke. Stroke 49:1058–1065

    Article  Google Scholar 

  39. Popa-Wagner A, Buga AM, Doeppner TR, Hermann DM (2014) Stem cell therapies in preclinical models of stroke associated with aging. Front Cell Neurosci 8:347

    Article  Google Scholar 

Download references

Acknowledgements

RESSTORE project (www.resstore.eu) funded by the European Commission under the H2020 program (Grant Number 681044).

Funding

Neurovascular Research Laboratory acknowledges funding for this Project by PI18/00804 from Fondo de Investigaciones Sanitarias, and takes part in the Spanish stroke research network INVICTUS+ (RD16/0019/00021) of the Instituto de Salud Carlos III (co-financed by the European Regional Development Fund, FEDER).

Author information

Authors and Affiliations

Authors

Contributions

JM and AB designed the original idea. EP, JJ, MH and AB reviewed the literature and extract information from the reviewed articles. EP wrote the manuscript. AR and JM provided valuable feedback and helped revise the draft. JM provided funding for the project. All authors have critically reviewed the manuscript and approved the final article version.

Corresponding author

Correspondence to Alejandro Bustamante.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palà, E., Bustamante, A., Jolkkonen, J. et al. Blood-based biomarkers and stem cell therapy in human stroke: a systematic review. Mol Biol Rep 47, 6247–6258 (2020). https://doi.org/10.1007/s11033-020-05627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05627-9

Keywords

Navigation