Abstract
Natural polysaccharides cellulose, hemicelluloses, inulin etc., galactooligosaccharides (GOS), and fructooligosaccharides (FOS) play a significant role in the improvement of gut microbiota balance and human health. These polysaccharides prevent pathogen adhesion that stimulates the immune system and gut barrier function by servicing as fermentable substrates for the gut microbiota. The gut microbiota plays a key role in the fermentation of non-digestible carbohydrates (NDCs) fibres. Moreover, the gut microbiota is responsible for the production of short-chain fatty acids (SCFAs) like acetate, propionate and butyrate. Acetate is the most abundant and it is used by many gut commensals to produce propionate and butyrate in a growth-promoting cross-feeding process. The dietary fibres affect the gut microbiome and play vital roles in signaling pathways. The SCFAs, acetate, butyrate, and propionate have been reported to affect on metabolic activities at the molecular level. Acetate affects the metabolic pathway through the G protein-coupled receptor (GPCR) and free fatty acid receptor 2 (FFAR2/GPR43) while butyrate and propionate transactivate the peroxisome proliferator-activated receptorsγ (PPARγ/NR1C3) and regulate the PPARγ target gene Angptl4 in colonic cells of the gut. The FFAR2 signaling pathway regulates the insulin-stimulated lipid accumulation in adipocytes and inflammation, however peptide tyrosine-tyrosine (PPY) and glucagon-like peptide 1 regulates appetite. The NDCs via gut microbiota dependent pathway regulate glucose homeostasis, gut integrity and hormone by GPCR, NF-kB, and AMPK-dependent processes.
Graphical abstract
Similar content being viewed by others
Abbreviations
- SCFAs:
-
Short chain fatty acids
- NDCs:
-
Non-digestible carbohydrates
- NF-kB:
-
Nuclear factor kappa β
- FFA:
-
Free fatty acid
- GPCR:
-
G protein-coupled receptor
- PPARγ :
-
Peroxisome proliferator-activated receptorsγ
- FFAR2:
-
Free fatty acid receptor 2
- HAD:
-
Histone deacetylation
- HCA2:
-
Hydroxycarboxylic acid receptor 2
- MCT-1:
-
Monocarboxylate transporter 1
- SMCT-1:
-
Sodium-coupled monocarboxylate transporter
- HDACs:
-
Histone deacetylases
- AMPK:
-
AMP-activated protein kinase
References
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN (2015) Role of the normal gut microbiota. World J Gastroenterol: WJG 21(29):8787. https://doi.org/10.3748/wjg.v21.i29.8787
Holscher HD (2017) Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8(2):172–184. https://doi.org/10.1080/19490976.2017.1290756
Jiménez-Escrig A, Sánchez-Muniz FJ (2000) Dietary fibre from edible seaweeds: chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr Res 20(4):585–598. https://doi.org/10.1016/S0271-5317(00)00149-4
Williams BA, Mikkelsen D, Flanagan BM, Gidley MJ (2019) “Dietary fibre”: moving beyond the “soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. J Anim Sci Biotechnol 10(1):45
Laterza L, Rizzatti G, Gaetani E, Chiusolo P, Gasbarrini A (2016) The gut microbiota and immune system relationship in human graft-versus-host disease. Med J Hematol Infect Dis 8(1). https://doi.org/10.4084/mjhid.2016.025
Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1):14. https://doi.org/10.3390/microorganisms7010014
Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533
Gentile CL, Weir TL (2018) The gut microbiota at the intersection of diet and human health. Science 362(6416):776–780. https://doi.org/10.1126/science.aau5812
Galanakis CM (ed) (2019) Dietary Fiber: properties, recovery, and applications. Academic Press, London
Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(Suppl 2):251–262
Jacobsen N, Melvaer KL, Hensten-Pettersen A (1972) Some properties of salivary amylase: a survey of the literature and some observations. J Dent Res 51(2):381–388
Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3(4):289–306
Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J et al (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307(5717):1955–1959. https://doi.org/10.1126/science.1109051
Walker AW, Duncan SH, Leitch ECM, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71(7):3692–3700. https://doi.org/10.1128/AEM.71.7.3692-3700.2005
Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH et al (2014) Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 8(11):2218–2230. https://doi.org/10.1038/ismej.2014.63
Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt TM (2019) Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio 10(1):e02566–e02518. https://doi.org/10.1128/mBio.02566-18
Tuncil YE, Thakkar RD, Marcia ADR, Hamaker BR, Lindemann SR (2018) Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-018-34912-8
Canfora EE, van der Beek CM, Hermes GD, Goossens GH, Jocken JW, Holst JJ et al (2017) Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals. Gastroenterology 153(1):87–97
Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A et al (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 7(1):1–19. https://doi.org/10.1616/1476-2137.15880
Van Loo J (2004) The specificity of the interaction with intestinal bacterial fermentation by prebiotics determines their physiological efficacy. Nutr Res Rev 17(1):89–98
Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TMS, Comelli EM (2014) Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 4(6):e121–e121
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345. https://doi.org/10.1079/PNS2002207
Cook SI, Sellin JH (1998) Short chain fatty acids in health and disease. Aliment Pharmacol Ther 12(6):499–507
Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1064
Tirosh A, Calay ES, Tuncman G, Claiborn KC, Inouye KE, Eguchi K et al (2019) The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci Transl Med 11(489):eaav0120
Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62(1):67–72
King DE, Mainous AG III, Lambourne CA (2012) Trends in dietary fiber intake in the United States, 1999-2008. J Acad Nutr Diet 112(5):642–648
Hong MY, Turner ND, Murphy ME, Carroll RJ, Chapkin RS, Lupton JR (2015) In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats. Cancer Prev Res 8(11):1076–1083
den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K et al (2013) Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol 305(12):G900–G910; PMID: 24136789. https://doi.org/10.1152/ajpgi.00265.2013
Zaibi MS, Stocker CJ, O’Dowd J, Davies A, Bellahcene M, Cawthorne MA et al (2010) Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 584(11):2381–2386; PMID: 20399779. https://doi.org/10.1016/j.febslet.2010.04.027
Demigné C, Morand C, Levrat MA, Besson C, Moundras C, Rémésy C (1995) Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br J Nutr 74(2):209–219; PMID:7547838. https://doi.org/10.1079/BJN19950124
Liou AP, Paziuk M, Luevano JM, Machineni S, Turnbaugh PJ, Kaplan LM (2013) Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 5(178):178ra41–178ra41; PMID: 23536013. https://doi.org/10.1126/scitranslmed.3005687
Layden BT, Yalamanchi SK, Wolever TM, Dunaif A, Lowe WL Jr (2012) Negative association of acetate with visceral adipose tissue and insulin levels. Diabetes Metab Syndr Obes 5:49–55; PMID: 22419881. https://doi.org/10.2147/DMSO.S29244
Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL et al (2016) Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534(7606):213–217. https://doi.org/10.1038/nature18309
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65
De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L et al (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65(11):1812–1821
Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529(7585):212–215
Duncan SH, Russell WR, Quartieri A, Rossi M, Parkhill J, Walker AW, Flint HJ (2016) Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid. Environ Microbiol 18(7):2214–2225
Alasmar RM, Varadharajan K, Shanmugakonar M, Al-Naemi HA (2019) Gut microbiota and health: understanding the role of diet. Food Nutr Sci 10(11):1344
Byrne CS, Chambers ES, Morrison DJ, Frost G (2015) The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes 39(9):1331–1338
Chambers ES, Morrison DJ, Frost G (2015) Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc 74(3):328–336
Nøhr MK, Egerod KL, Christiansen SH, Gille A, Offermanns S, Schwartz TW, Møller M (2015) Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience 290:126–137. https://doi.org/10.1016/j.neuroscience.2015.01.040
Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE et al (2015) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64(11):1744–1754
Rajpal A, Dube S, Carvalho F, Simoes AR, Figueiredo A, Basu A et al (2013) Effects of transaldolase exchange on estimates of gluconeogenesis in type 2 diabetes. Am J Physiol Endocrinol Metab 305(4):E465–E474
den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH et al (2015) Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64(7):2398–2408; PMID: 25695945. https://doi.org/10.2337/db14-1213
Crouse JR, Gerson CD, DeCarli LM, Lieber CS (1968) Role of acetate in the reduction of plasma free fatty acids produced by ethanol in man. J Lipid Res 9(4):509–512
Tang C, Ahmed K, Gille A, Lu S, Gröne HJ, Tunaru S, Offermanns S (2015) Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 21(2):173; PMID: 25581519. https://doi.org/10.1038/nm.3779
van der Beek CM, Bloemen JG, van den Broek MA, Lenaerts K, Venema K, Buurman WA, Dejong CH (2015) Hepatic uptake of rectally administered butyrate prevents an increase in systemic butyrate concentrations in humans. J Nutr 145(9):2019–2024
Eeckhaut V, Machiels K, Perrier C, Romero C, Maes S, Flahou B et al (2013) Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62(12):1745–1752
Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V et al (2014) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63(8):1275–1283
Shapira Y, Agmon-Levin N, Shoenfeld Y (2010) Defining and analyzing geoepidemiology and human autoimmunity. J Autoimmun 34(3):J168–J177
Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D et al (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278(13):11312–11319
Offermanns S (2014) Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol 54:407–434
Agus A, Denizot J, Thevenot J, Martinez-Medina M, Massier S, Sauvanet P et al (2016) Western diet induces a shift in microbiota composition enhancing susceptibility to adherent-Invasive E. coli infection and intestinal inflammation. Sci Rep 6:19032
Vernia P, Annese V, Bresci G, d’Albasio G, d’Incà R, Giaccari S et al (2003) Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: results of a multicentre trial. Eur J Clin Investig 33(3):244–248
Li Q, Chen H, Zhang M, Wu T, Liu R (2019) Altered short chain fatty acid profiles induced by dietary fiber intervention regulate AMPK levels and intestinal homeostasis. Food Funct 10(11):7174–7187
Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes 61(2):364–371
Kim HJ, Bae SC (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3(2):166
MacDonald VE, Howe LJ (2009) Histone acetylation: where to go and how to get there. Epigenetics 4(3):139–143
Tazoe H, Otomo Y, Karaki SI, Kato I, Fukami Y, Terasaki M, Kuwahara A (2009) Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res 30(3):149–156
Kendrick SF, O’Boyle G, Mann J, Zeybel M, Palmer J, Jones DE, Day CP (2010) Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology 51(6):1988–1997
Usami M, Kishimoto K, Ohata A, Miyoshi M, Aoyama M, Fueda Y, Kotani J (2008) Butyrate and trichostatin a attenuate nuclear factor κB activation and tumor necrosis factor α secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res 28(5):321–328
Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci 101(4):1045–1050
Kang I, Kim SW, Youn JH (2011) Effects of nicotinic acid on gene expression: potential mechanisms and implications for wanted and unwanted effects of the lipid-lowering drug. J Clin Endocrinol Metabol 96(10):3048–3055
Shimizu H, Masujima Y, Ushiroda C, Mizushima R, Taira S, Ohue-Kitano R, Kimura I (2019) Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Sci Rep 9(1):1–10
Gao X, Lin SH, Ren F, Li JT, Chen JJ, Yao CB et al (2016) Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun 7(1):1–14
Martin AM, Lumsden AL, Young RL, Jessup CF, Spencer NJ, Keating DJ (2017) The nutrient-sensing repertoires of mouse enterochromaffin cells differ between duodenum and colon. Neurogastroenterol Motil 29(6):e13046
Dumont Y, Fournier A, St-Pierre S, Quirion R (1995) Characterization of neuropeptide Y binding sites in rat brain membrane preparations using [125I][Leu31, Pro34] peptide YY and [125I] peptide YY3-36 as selective Y1 and Y2 radioligands. J Pharmacol Exp Ther 272(2):673–680
Loh K, Herzog H, Shi YC (2015) Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab 26(3):125–135
Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR et al (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7(4)
Grøndahl MF, Keating DJ, Vilsbøll T, Knop FK (2017) Current therapies that modify glucagon secretion: what is the therapeutic effect of such modifications? Curr Diab Rep 17(12):128
Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87(4):1409–1439
David LA, Maurice CF, Carmody RN, Gootengerg DB, Button JE, Wolfe B, Turnbaugh PJ (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:7484
Sileikiene V, Mosenthin R, Bauer E, Piepho HP, Tafaj M, Kruszewska D et al (2008) Effect of ileal infusion of short-chain fatty acids on pancreatic prandial secretion and gastrointestinal hormones in pigs. Pancreas 37(2):196–202
Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T et al (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4(1):1–12
Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X et al (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156
Acknowledgements
The authors are grateful to the Director, ICAR-National Dairy Research Institute, Karnal, (Haryana), India for his guidance and moral support.
Funding
No funds were required for this work.
Author information
Authors and Affiliations
Contributions
Conception, design and writing of the manuscript were done by KR, JK and CD, Principal Scientist.
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that there is no conflict of competing interest regarding this review article.
Ethical approval
The present study is a review of literature and as a consequence, there are no human subjects or animal experimentation in this manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kumar, J., Rani, K. & Datt, C. Molecular link between dietary fibre, gut microbiota and health. Mol Biol Rep 47, 6229–6237 (2020). https://doi.org/10.1007/s11033-020-05611-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-020-05611-3