Skip to main content

Molecular link between dietary fibre, gut microbiota and health

Abstract

Natural polysaccharides cellulose, hemicelluloses, inulin etc., galactooligosaccharides (GOS), and fructooligosaccharides (FOS) play a significant role in the improvement of gut microbiota balance and human health. These polysaccharides prevent pathogen adhesion that stimulates the immune system and gut barrier function by servicing as fermentable substrates for the gut microbiota. The gut microbiota plays a key role in the fermentation of non-digestible carbohydrates (NDCs) fibres. Moreover, the gut microbiota is responsible for the production of short-chain fatty acids (SCFAs) like acetate, propionate and butyrate. Acetate is the most abundant and it is used by many gut commensals to produce propionate and butyrate in a growth-promoting cross-feeding process. The dietary fibres affect the gut microbiome and play vital roles in signaling pathways. The SCFAs, acetate, butyrate, and propionate have been reported to affect on metabolic activities at the molecular level. Acetate affects the metabolic pathway through the G protein-coupled receptor (GPCR) and free fatty acid receptor 2 (FFAR2/GPR43) while butyrate and propionate transactivate the peroxisome proliferator-activated receptorsγ (PPARγ/NR1C3) and regulate the PPARγ target gene Angptl4 in colonic cells of the gut. The FFAR2 signaling pathway regulates the insulin-stimulated lipid accumulation in adipocytes and inflammation, however peptide tyrosine-tyrosine (PPY) and glucagon-like peptide 1 regulates appetite. The NDCs via gut microbiota dependent pathway regulate glucose homeostasis, gut integrity and hormone by GPCR, NF-kB, and AMPK-dependent processes.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

SCFAs:

Short chain fatty acids

NDCs:

Non-digestible carbohydrates

NF-kB:

Nuclear factor kappa β

FFA:

Free fatty acid

GPCR:

G protein-coupled receptor

PPARγ :

Peroxisome proliferator-activated receptorsγ

FFAR2:

Free fatty acid receptor 2

HAD:

Histone deacetylation

HCA2:

Hydroxycarboxylic acid receptor 2

MCT-1:

Monocarboxylate transporter 1

SMCT-1:

Sodium-coupled monocarboxylate transporter

HDACs:

Histone deacetylases

AMPK:

AMP-activated protein kinase

References

  1. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN (2015) Role of the normal gut microbiota. World J Gastroenterol: WJG 21(29):8787. https://doi.org/10.3748/wjg.v21.i29.8787

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Holscher HD (2017) Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8(2):172–184. https://doi.org/10.1080/19490976.2017.1290756

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Jiménez-Escrig A, Sánchez-Muniz FJ (2000) Dietary fibre from edible seaweeds: chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr Res 20(4):585–598. https://doi.org/10.1016/S0271-5317(00)00149-4

    Article  Google Scholar 

  4. Williams BA, Mikkelsen D, Flanagan BM, Gidley MJ (2019) “Dietary fibre”: moving beyond the “soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. J Anim Sci Biotechnol 10(1):45

    PubMed  PubMed Central  Google Scholar 

  5. Laterza L, Rizzatti G, Gaetani E, Chiusolo P, Gasbarrini A (2016) The gut microbiota and immune system relationship in human graft-versus-host disease. Med J Hematol Infect Dis 8(1). https://doi.org/10.4084/mjhid.2016.025

  6. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1):14. https://doi.org/10.3390/microorganisms7010014

    CAS  Article  PubMed Central  Google Scholar 

  7. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Gentile CL, Weir TL (2018) The gut microbiota at the intersection of diet and human health. Science 362(6416):776–780. https://doi.org/10.1126/science.aau5812

    CAS  Article  PubMed  Google Scholar 

  9. Galanakis CM (ed) (2019) Dietary Fiber: properties, recovery, and applications. Academic Press, London

    Google Scholar 

  10. Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(Suppl 2):251–262

    PubMed  Google Scholar 

  11. Jacobsen N, Melvaer KL, Hensten-Pettersen A (1972) Some properties of salivary amylase: a survey of the literature and some observations. J Dent Res 51(2):381–388

    CAS  PubMed  Google Scholar 

  12. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3(4):289–306

    PubMed  PubMed Central  Google Scholar 

  13. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J et al (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307(5717):1955–1959. https://doi.org/10.1126/science.1109051

    CAS  Article  PubMed  Google Scholar 

  14. Walker AW, Duncan SH, Leitch ECM, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71(7):3692–3700. https://doi.org/10.1128/AEM.71.7.3692-3700.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH et al (2014) Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 8(11):2218–2230. https://doi.org/10.1038/ismej.2014.63

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt TM (2019) Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio 10(1):e02566–e02518. https://doi.org/10.1128/mBio.02566-18

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Tuncil YE, Thakkar RD, Marcia ADR, Hamaker BR, Lindemann SR (2018) Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-018-34912-8

    CAS  Article  Google Scholar 

  18. Canfora EE, van der Beek CM, Hermes GD, Goossens GH, Jocken JW, Holst JJ et al (2017) Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals. Gastroenterology 153(1):87–97

    CAS  PubMed  Google Scholar 

  19. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A et al (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 7(1):1–19. https://doi.org/10.1616/1476-2137.15880

    Article  Google Scholar 

  20. Van Loo J (2004) The specificity of the interaction with intestinal bacterial fermentation by prebiotics determines their physiological efficacy. Nutr Res Rev 17(1):89–98

    PubMed  Google Scholar 

  21. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TMS, Comelli EM (2014) Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 4(6):e121–e121

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345. https://doi.org/10.1079/PNS2002207

    CAS  Article  PubMed  Google Scholar 

  23. Cook SI, Sellin JH (1998) Short chain fatty acids in health and disease. Aliment Pharmacol Ther 12(6):499–507

    CAS  PubMed  Google Scholar 

  24. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1064

    CAS  PubMed  Google Scholar 

  25. Tirosh A, Calay ES, Tuncman G, Claiborn KC, Inouye KE, Eguchi K et al (2019) The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci Transl Med 11(489):eaav0120

    PubMed  Google Scholar 

  26. Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62(1):67–72

    CAS  PubMed  Google Scholar 

  27. King DE, Mainous AG III, Lambourne CA (2012) Trends in dietary fiber intake in the United States, 1999-2008. J Acad Nutr Diet 112(5):642–648

    PubMed  Google Scholar 

  28. Hong MY, Turner ND, Murphy ME, Carroll RJ, Chapkin RS, Lupton JR (2015) In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats. Cancer Prev Res 8(11):1076–1083

    CAS  Google Scholar 

  29. den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K et al (2013) Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol 305(12):G900–G910; PMID: 24136789. https://doi.org/10.1152/ajpgi.00265.2013

    CAS  Article  Google Scholar 

  30. Zaibi MS, Stocker CJ, O’Dowd J, Davies A, Bellahcene M, Cawthorne MA et al (2010) Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 584(11):2381–2386; PMID: 20399779. https://doi.org/10.1016/j.febslet.2010.04.027

    CAS  Article  PubMed  Google Scholar 

  31. Demigné C, Morand C, Levrat MA, Besson C, Moundras C, Rémésy C (1995) Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br J Nutr 74(2):209–219; PMID:7547838. https://doi.org/10.1079/BJN19950124

    Article  PubMed  Google Scholar 

  32. Liou AP, Paziuk M, Luevano JM, Machineni S, Turnbaugh PJ, Kaplan LM (2013) Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 5(178):178ra41–178ra41; PMID: 23536013. https://doi.org/10.1126/scitranslmed.3005687

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Layden BT, Yalamanchi SK, Wolever TM, Dunaif A, Lowe WL Jr (2012) Negative association of acetate with visceral adipose tissue and insulin levels. Diabetes Metab Syndr Obes 5:49–55; PMID: 22419881. https://doi.org/10.2147/DMSO.S29244

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL et al (2016) Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534(7606):213–217. https://doi.org/10.1038/nature18309

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    CAS  PubMed  PubMed Central  Google Scholar 

  36. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L et al (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65(11):1812–1821

    PubMed  Google Scholar 

  37. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529(7585):212–215

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Duncan SH, Russell WR, Quartieri A, Rossi M, Parkhill J, Walker AW, Flint HJ (2016) Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid. Environ Microbiol 18(7):2214–2225

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Alasmar RM, Varadharajan K, Shanmugakonar M, Al-Naemi HA (2019) Gut microbiota and health: understanding the role of diet. Food Nutr Sci 10(11):1344

    Google Scholar 

  40. Byrne CS, Chambers ES, Morrison DJ, Frost G (2015) The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes 39(9):1331–1338

    CAS  Google Scholar 

  41. Chambers ES, Morrison DJ, Frost G (2015) Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc 74(3):328–336

    CAS  PubMed  Google Scholar 

  42. Nøhr MK, Egerod KL, Christiansen SH, Gille A, Offermanns S, Schwartz TW, Møller M (2015) Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience 290:126–137. https://doi.org/10.1016/j.neuroscience.2015.01.040

    CAS  Article  PubMed  Google Scholar 

  43. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE et al (2015) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64(11):1744–1754

    CAS  PubMed  Google Scholar 

  44. Rajpal A, Dube S, Carvalho F, Simoes AR, Figueiredo A, Basu A et al (2013) Effects of transaldolase exchange on estimates of gluconeogenesis in type 2 diabetes. Am J Physiol Endocrinol Metab 305(4):E465–E474

    CAS  PubMed  PubMed Central  Google Scholar 

  45. den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH et al (2015) Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64(7):2398–2408; PMID: 25695945. https://doi.org/10.2337/db14-1213

    CAS  Article  Google Scholar 

  46. Crouse JR, Gerson CD, DeCarli LM, Lieber CS (1968) Role of acetate in the reduction of plasma free fatty acids produced by ethanol in man. J Lipid Res 9(4):509–512

    CAS  PubMed  Google Scholar 

  47. Tang C, Ahmed K, Gille A, Lu S, Gröne HJ, Tunaru S, Offermanns S (2015) Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 21(2):173; PMID: 25581519. https://doi.org/10.1038/nm.3779

    CAS  Article  PubMed  Google Scholar 

  48. van der Beek CM, Bloemen JG, van den Broek MA, Lenaerts K, Venema K, Buurman WA, Dejong CH (2015) Hepatic uptake of rectally administered butyrate prevents an increase in systemic butyrate concentrations in humans. J Nutr 145(9):2019–2024

    PubMed  Google Scholar 

  49. Eeckhaut V, Machiels K, Perrier C, Romero C, Maes S, Flahou B et al (2013) Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62(12):1745–1752

    CAS  PubMed  Google Scholar 

  50. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V et al (2014) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63(8):1275–1283

    CAS  PubMed  Google Scholar 

  51. Shapira Y, Agmon-Levin N, Shoenfeld Y (2010) Defining and analyzing geoepidemiology and human autoimmunity. J Autoimmun 34(3):J168–J177

    CAS  PubMed  Google Scholar 

  52. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D et al (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278(13):11312–11319

    CAS  PubMed  Google Scholar 

  53. Offermanns S (2014) Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol 54:407–434

    CAS  PubMed  Google Scholar 

  54. Agus A, Denizot J, Thevenot J, Martinez-Medina M, Massier S, Sauvanet P et al (2016) Western diet induces a shift in microbiota composition enhancing susceptibility to adherent-Invasive E. coli infection and intestinal inflammation. Sci Rep 6:19032

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vernia P, Annese V, Bresci G, d’Albasio G, d’Incà R, Giaccari S et al (2003) Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: results of a multicentre trial. Eur J Clin Investig 33(3):244–248

    CAS  Google Scholar 

  56. Li Q, Chen H, Zhang M, Wu T, Liu R (2019) Altered short chain fatty acid profiles induced by dietary fiber intervention regulate AMPK levels and intestinal homeostasis. Food Funct 10(11):7174–7187

    CAS  PubMed  Google Scholar 

  57. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes 61(2):364–371

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim HJ, Bae SC (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3(2):166

    CAS  PubMed  Google Scholar 

  59. MacDonald VE, Howe LJ (2009) Histone acetylation: where to go and how to get there. Epigenetics 4(3):139–143

    CAS  PubMed  Google Scholar 

  60. Tazoe H, Otomo Y, Karaki SI, Kato I, Fukami Y, Terasaki M, Kuwahara A (2009) Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res 30(3):149–156

    CAS  PubMed  Google Scholar 

  61. Kendrick SF, O’Boyle G, Mann J, Zeybel M, Palmer J, Jones DE, Day CP (2010) Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology 51(6):1988–1997

    CAS  PubMed  Google Scholar 

  62. Usami M, Kishimoto K, Ohata A, Miyoshi M, Aoyama M, Fueda Y, Kotani J (2008) Butyrate and trichostatin a attenuate nuclear factor κB activation and tumor necrosis factor α secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res 28(5):321–328

    CAS  PubMed  Google Scholar 

  63. Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci 101(4):1045–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kang I, Kim SW, Youn JH (2011) Effects of nicotinic acid on gene expression: potential mechanisms and implications for wanted and unwanted effects of the lipid-lowering drug. J Clin Endocrinol Metabol 96(10):3048–3055

    CAS  Google Scholar 

  65. Shimizu H, Masujima Y, Ushiroda C, Mizushima R, Taira S, Ohue-Kitano R, Kimura I (2019) Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Sci Rep 9(1):1–10

    Google Scholar 

  66. Gao X, Lin SH, Ren F, Li JT, Chen JJ, Yao CB et al (2016) Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun 7(1):1–14

    Google Scholar 

  67. Martin AM, Lumsden AL, Young RL, Jessup CF, Spencer NJ, Keating DJ (2017) The nutrient-sensing repertoires of mouse enterochromaffin cells differ between duodenum and colon. Neurogastroenterol Motil 29(6):e13046

    Google Scholar 

  68. Dumont Y, Fournier A, St-Pierre S, Quirion R (1995) Characterization of neuropeptide Y binding sites in rat brain membrane preparations using [125I][Leu31, Pro34] peptide YY and [125I] peptide YY3-36 as selective Y1 and Y2 radioligands. J Pharmacol Exp Ther 272(2):673–680

    CAS  PubMed  Google Scholar 

  69. Loh K, Herzog H, Shi YC (2015) Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab 26(3):125–135

    CAS  PubMed  Google Scholar 

  70. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR et al (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7(4)

  71. Grøndahl MF, Keating DJ, Vilsbøll T, Knop FK (2017) Current therapies that modify glucagon secretion: what is the therapeutic effect of such modifications? Curr Diab Rep 17(12):128

    PubMed  Google Scholar 

  72. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87(4):1409–1439

    CAS  PubMed  Google Scholar 

  73. David LA, Maurice CF, Carmody RN, Gootengerg DB, Button JE, Wolfe B, Turnbaugh PJ (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:7484

    Google Scholar 

  74. Sileikiene V, Mosenthin R, Bauer E, Piepho HP, Tafaj M, Kruszewska D et al (2008) Effect of ileal infusion of short-chain fatty acids on pancreatic prandial secretion and gastrointestinal hormones in pigs. Pancreas 37(2):196–202

    CAS  PubMed  Google Scholar 

  75. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T et al (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4(1):1–12

    Google Scholar 

  76. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X et al (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, ICAR-National Dairy Research Institute, Karnal, (Haryana), India for his guidance and moral support.

Funding

No funds were required for this work.

Author information

Authors and Affiliations

Authors

Contributions

Conception, design and writing of the manuscript were done by KR, JK and CD, Principal Scientist.

Corresponding author

Correspondence to Jitendra Kumar.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of competing interest regarding this review article.

Ethical approval

The present study is a review of literature and as a consequence, there are no human subjects or animal experimentation in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Rani, K. & Datt, C. Molecular link between dietary fibre, gut microbiota and health. Mol Biol Rep 47, 6229–6237 (2020). https://doi.org/10.1007/s11033-020-05611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05611-3

Keywords

  • Dietary fibre
  • Gut microbiota
  • Gut integrity
  • Signaling
  • Short-chain fatty acids
  • Metabolites
  • Non-digestible carbohydrates