Skip to main content
Log in

Polymorphisms in XPC and XPD genes modulate DNA damage in pesticide-exposed agricultural workers of Punjab, North-West India

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The genetic susceptibility of individuals to the genotoxic effect of pesticides may be modulated by variations in genes involved in nucleotide excision repair (NER) pathway and therefore plays an important role in the evaluation of occupational risk. We aimed to evaluate the role of xeroderma pigmentosum complementation group C (XPC) Lys939Gln (A2920C, rs2228001), XPC Ala499Val (C2151T, rs2228000), xeroderma pigmentosum complementation group D (XPD) Asp312Asn (G23591A, rs1799793) and XPD Lys751Gln (A35931C, rs13181) in the modulation of DNA damage. A total of 450 subjects (225 pesticide-exposed agricultural workers and 225 age- and sex-matched controls) from Punjab, North-West India were recruited to study DNA damage by alkaline comet assay. Genotyping was carried out by PCR–RFLP using site-specific restriction enzymes. We found significant elevation in DNA damage parameters in pesticide-exposed agricultural workers as compared to the controls (p < 0.01). Association of comet tail length with XPC 939Gln/Gln (CC), XPD 312Asp/Asn (GA) and XPD 312Asn/Asn (AA) genotypes was observed. Frequency of cells showing DNA migration was significantly higher in exposed workers with variant XPC 939Gln/Gln (CC), XPD 312Asp/Asn (GA) and XPD 312Asn/Asn (AA) genotypes. Mean tail length was significantly increased in agricultural workers carrying XPD 312Asn/Asn (AA) genotype. Elevation in total comet DNA migration was also observed in exposed workers carrying variant XPC 939Lys/Gln (AC), XPC 939Gln/Gln (CC), XPC 499Val/Val (TT) and XPD 312Asn/Asn (AA) genotypes. Our results strongly indicate significant positive association of variant XPC and XPD genotypes with higher pesticide-induced DNA damage in North-West Indian agricultural workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolognesi C (2003) Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res 543:251–272

    Article  CAS  Google Scholar 

  2. Mittal S, Kaur G, Vishwakarma GS (2014) Effects of environmental pesticides on the health of rural communities in the Malwa region of Punjab, India: a review. Hum Ecol Risk Assess Int J 20:366–387

    Article  CAS  Google Scholar 

  3. Kisby GE, Muniz JF, Scherer J, Lasarev MR, Koshy M, Kow YW, McCauley L (2009) Oxidative stress and DNA damage in agricultural workers. J Agromed 14:206–214

    Article  Google Scholar 

  4. Kaur K, Kaur R (2018) Occupational pesticide exposure, impaired DNA repair and diseases. Indian J Occup Environ Med 22:74–81

    Article  Google Scholar 

  5. Kim KH, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535

    Article  CAS  Google Scholar 

  6. Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177

    Article  CAS  Google Scholar 

  7. International Agency for Research on Cancer (IARC) (2003) Monographs on the evaluation of carcinogenic risk to human. Vol. 5-53. IARC, Lyon

    Google Scholar 

  8. Aiassa DE, Mañas FJ, Gentile NE, Bosch B, Salinero MC, Gorla NBM (2019) Evaluation of genetic damage in pesticides applicators from the province of Córdoba, Argentina. Environ Sci Pollut Res Int 26(20):20981–20988

    Article  CAS  Google Scholar 

  9. Yang HY, Liu J, Yang SY, Wang HY, Wang YD (2014) Increased sister chromatid exchange in peripheral blood lymphocytes from humans exposed to pesticide: evidence based on a meta-analysis. Asian Pac J Cancer Prev 15:9725–9730

    Article  Google Scholar 

  10. Hilgert Jacobsen-Pereira C, Dos Santos CR, Troina Maraslis F, Pimentel L, Feijó AJL, Iomara Silva C, de Medeiros GDS, Costa Zeferino R, Curi Pedrosa R, Weidner Maluf S (2018) Markers of genotoxicity and oxidative stress in farmers exposed to pesticides. Ecotoxicol Environ Saf 148:177–183

    Article  CAS  Google Scholar 

  11. Intranuovo G, Schiavulli N, Cavone D, Birtolo F, Cocco P, Vimercati L, Macinagrossa L, Giordano A, Perrone T, Ingravallo G, Mazza P, Strusi M, Spinosa C, Specchia G, Ferri GM (2018) Assessment of DNA damages in lymphocytes of agricultural workers exposed to pesticides by comet assay in a cross-sectional study. Biomarkers 23(5):462–473

    Article  CAS  Google Scholar 

  12. Azqueta A, Ladeira C, Giovannelli L, Boutet-Robinet E, Bonassi S, Neri M, Gajski G, Duthie S, Del Bo C, Riso P, Koppen G, Basaran N, Collins A, Møller P (2020) Application of the comet assay in human biomonitoring: an hCOMET perspective. Mutat Res 783:108288

    Article  CAS  Google Scholar 

  13. Azqueta A, Muruzabal D, Boutet-Robinet E, Milic M, Dusinska M, Brunborg G, Møller P, Collins AR (2019) Technical recommendations to perform the alkaline standard and enzyme-modified comet assay in human biomonitoring studies. Mutat Res 843:24–32

    Article  CAS  Google Scholar 

  14. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261

    Article  CAS  Google Scholar 

  15. Kusakabe M, Onishi Y, Tada H, Kurihara F, Kusao K, Furukawa M, Iwai S, Yokoi M, Sakai W, Sugasawa K (2019) Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes Environ 41:2

    Article  Google Scholar 

  16. Gillet LCJ, Scharer OD (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 106:253–276

    Article  CAS  Google Scholar 

  17. de Laat WL, Jaspers NGJ, Hoeijmakers JHJ (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13:768–785

    Article  Google Scholar 

  18. Li L, Peterson C, Legerski R (1996) Sequence of the mouse XPC cDNA and genomic structure of the human XPC gene. Nucleic Acids Res 24:1026–1028

    Article  CAS  Google Scholar 

  19. Lunn RM, Helzlsouer KJ, Parshad R, Umbach DM, Harris EL, Sanford KK, Bell DA (2000) XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis 21:551–555

    Article  CAS  Google Scholar 

  20. Vodicka P, Kumar R, Stetina R, Sanyal S, Soucek P, Haufroid V, Dusinska M, Kuricova M, Zamecnikova M, Musak L, Buchancova J, Norppa H, Hirvonen A, Vodickova L, Naccarati A, Matousu Z, Hemminki K (2004) Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis 25:757–763

    Article  CAS  Google Scholar 

  21. Naccarati A, Soucek P, Stetina R, Haufroid V, Kumar R, Vodickova L, Trtkova K, Dusinska M, Hemminki K, Vodicka P (2006) Genetic polymorphisms and possible gene–gene interactions in metabolic and DNA repair genes: effects on DNA damage. Mutat Res 593:22–31

    Article  CAS  Google Scholar 

  22. Slyskova J, Naccarati A, Polakova V, Pardini B, Vodickova L, Stetina R, Schmuczerova J, Smerhovsky Z, Lipska L, Vodicka P (2011) DNA damage and nucleotide excision repair capacity in healthy individuals. Environ Mol Mutagen 52:511–517

    Article  CAS  Google Scholar 

  23. Wlodarczyk M, Nowicka G (2012) XPD gene rs13181 polymorphism and DNA damage in human lymphocytes. Biochem Genet 50:860–870

    Article  CAS  Google Scholar 

  24. Norppa H (2004) Cytogenetic biomarkers and genetic polymorphisms. Toxicol Lett 149:309–334

    Article  CAS  Google Scholar 

  25. Zhu Y, Yang H, Chen Q, Lin J, Grossman HB, Dinney CP, Wu X, Gu J (2008) Modulation of DNA damage/DNA repair capacity by XPC polymorphisms. DNA Repair 7:141–148

    Article  CAS  Google Scholar 

  26. Barry KH, Koutros S, Andreotti G, Sandler DP, Burdette LA, Yeager M, Freeman LEB, Lubin JH, Ma X, Zheng T, Alavanja MC, Berndt SI (2011) Genetic variation in nucleotide excision repair pathway genes pesticide exposure and prostate cancer risk. Carcinogenesis 33:331–337

    Article  Google Scholar 

  27. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  28. Chuang CH, Hu ML (2004) Use of whole blood directly for single-cell gel electrophoresis (comet) assay in vivo and white blood cells for in vitro assay. Mutat Res 564:75–82

    Article  CAS  Google Scholar 

  29. Sambrook J, Green MR (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  30. Khan SG, Metter EJ, Tarone RE, Bohr VA, Grossman L, Hedayati M, Bale SJ, Emmert S, Kraemer KH (2000) A new xeroderma pigmentosum group C poly (AT) insertion/deletion polymorphism. Carcinogenesis 21:1821–1825

    Article  CAS  Google Scholar 

  31. Jiao X, Ren J, Chen H, Ma J, Rao S, Huang K, Wu S, Fu J, Su X, Luo C, Shi J, Broelsch CE (2011) Ala499Val (C>T) and Lys939Gln (A>C) polymorphisms of the XPC gene: their correlation with the risk of primary gallbladder adenocarcinoma–a case-control study in China. Carcinogenesis 32:496–501

    Article  CAS  Google Scholar 

  32. Lopez-Cima MF, González-Arriaga P, García-Castro L, Pascual T, Marron MG, Puente XS, Tardon A (2007) Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of northern Spain. BMC Cancer 7:162

    Article  Google Scholar 

  33. Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomark Prev 11:1513–1530

    CAS  Google Scholar 

  34. Au WW, Salama SA, Sierra-Torres CH (2003) Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays. Environ Health Perspect 111:1843–1850

    Article  CAS  Google Scholar 

  35. Wlodarczyk M, Nowicka G (2012) Common polymorphisms in CYP1A1, GSTM1, GSTT1, GSTP1 and XPD genes and endogenous DNA damage. Mol Biol Rep 39:5699–5704

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Department of Science and Technology- Science and Engineering Research Board (DST-SERB), New Delhi, India (Grant No. YSS/2015/000870).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupinder Kaur.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval

The approval was obtained from Institutional Ethical Committee (IEC) of Sri Guru Granth World University, Fatehgarh Sahib, Punjab (SGGSWU/IEC/2015/02).

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, K., Kaur, R. Polymorphisms in XPC and XPD genes modulate DNA damage in pesticide-exposed agricultural workers of Punjab, North-West India. Mol Biol Rep 47, 5253–5262 (2020). https://doi.org/10.1007/s11033-020-05600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05600-6

Keywords

Navigation