Skip to main content
Log in

Coordination of las regulated virulence factors with Multidrug-Resistant and extensively drug-resistant in superbug strains of P. aeruginosa

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Successful pathogenicity often resulted from a complicated association between virulence and antibiotic resistance in Pseudomonas aeruginosa infections. Therefore, the current study aimed to investigate the relationship between the las system and antibiotic resistance. Seventy-three (73) P. aeruginosa isolates were collected from burn wounds (26.02%), blood cultures (30.13%), catheters (12.32%), and urine culture (31.50%). Among the 73 collected isolates, 22 isolates were considered as multi-drug resistant (MDR) and 11 isolates as extensively-drug resistant (XDR). Furthermore, phenazines and LasA protease were detected among 21.91% and 32.87% of isolates, respectively. Quantitative real-time PCR assessment of KPC, MBL, and lasI/R indicated that resistance and virulence factors are more expressed in XDR strains than MDR strains. Also, the expression level of KPC and MBL reduced in non-biofilm forming strains. However, increased expression levels of lasI, lasR, and the KPC genes were observed in LasA and LasB protease producing strains. Interestingly, 16 known sequence types (including ST108, ST260, ST217) and three novel STs (ST2452, ST2427, and ST2542) were characterized among the collected isolates, which are related to the virulence and resistance. In MDR-XDR strains, a strong correlation between lasI/R and the variants of antibiotic resistance genes was found. In conclusion, the pathogenicity of P. aeruginosa may increase the prevalence of antibiotic-resistant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

MDR:

Multidrug-resistant

XDR:

Extensively drug-resistant

ESBL:

Extended-spectrum β-lactamase

MBL:

Metallo β-lactamase

QS:

Quorum sensing

CF:

Cystic fibrosis

MEGA5:

Molecular evolutionary genetics analysis version 5

References

  1. Ding F et al (2018) The Pseudomonas aeruginosa orphan quorum sensing signal receptor QscR regulates global quorum sensing gene expression by activating a single linked operon. mBio 9(4):e01274-18

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor perspectives in medicine 2(11):a012427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30(2):274–291

    Article  CAS  PubMed  Google Scholar 

  4. Steindler L et al (2009) LasI/R and RhlI/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl Environ Microbiol 75(15):5131–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1):26–41

    Article  CAS  PubMed  Google Scholar 

  6. Lau GW et al (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10(12):599–606

    Article  CAS  PubMed  Google Scholar 

  7. Hall S et al (2016) Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins (Basel) 8(8):e236

    Article  CAS  Google Scholar 

  8. Furiga A et al (2016) Impairment of Pseudomonas aeruginosa biofilm resistance to antibiotics by combining the drugs with a new quorum-sensing inhibitor. Antimicrob Agents Chemother 60(3):1676–1686

    Article  CAS  PubMed Central  Google Scholar 

  9. Bonomo RA et al (2017) Carbapenemase-producing organisms: a global scourge! Clin Infect Dis 66(8):1290–1297

    Article  PubMed Central  CAS  Google Scholar 

  10. Maseda H et al (2004) Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 48(4):1320–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cabot G et al (2016) Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob Agents Chemother 60(3):1767–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bogiel T et al (2017) The prevalence of exoenzyme S gene in multidrug-sensitive and multidrug-resistant Pseudomonas aeruginosa clinical strains. Pol J Microbiol 66(4):427–431

    Article  PubMed  Google Scholar 

  13. Jorth P et al (2017) Evolved aztreonam resistance is multifactorial and can produce hypervirulence in Pseudomonas aeruginosa. MBio 8(5):e00517–e617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahon CR, Lehman DC, Manuselis G (2007) Textbook of Diagnostic microbiology. Saunders Elsevier, Amsterdam

    Google Scholar 

  15. El-Fouly MZ et al (2015) Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J Radiat Res Appl Sci 8(1):36–48

    Article  CAS  Google Scholar 

  16. O'Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp 47:2437

    Google Scholar 

  17. Ołdak E, Trafny EA (2005) Secretion of proteases by Pseudomonas aeruginosa biofilms exposed to ciprofloxacin. Antimicrob Agents Chemother 49(8):3281–3288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fazeli N, Momtaz H (2014) Virulence gene profiles of multidrug-resistant Pseudomonas aeruginosa isolated from Iranian hospital infections. Iran Red Crescent Med J 16(10):e15722

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fazeli H et al (2014) Molecular epidemiology and mechanisms of antimicrobial resistance in Pseudomonas aeruginosa isolates causing burn wound infection in Iran. J Chemother 26(4):222–228

    Article  CAS  PubMed  Google Scholar 

  20. Lima JLDC et al (2018) Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Braz J Infec Dis 22(2):129–136

    Article  Google Scholar 

  21. Quale J et al (2006) Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 50(5):1633–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uz Zaman T et al (2014) Multi-drug carbapenem-resistant Klebsiella pneumoniae infection carrying the OXA-48 gene and showing variations in outer membrane protein 36 causing an outbreak in a tertiary care hospital in Riyadh Saudi, Arabia. Int J Infect Dis 28:186–192

    Article  CAS  PubMed  Google Scholar 

  23. Geyer CN, Hanson ND (2014) Multiplex high-resolution melting analysis as a diagnostic tool for detection of plasmid-mediated AmpC β-lactamase genes. J Clin Microbiol 52(4):1262–1265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vernez I et al (2005) Population genetic analysis of Pseudomonas aeruginosa using multilocus sequence typing. FEMS Immunol Med Microbiol 43(1):29–35

    Article  CAS  PubMed  Google Scholar 

  26. Dou Y et al (2017) Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014. J Int Med Res 45(3):1124–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Acar A et al (2019) Pooled prevalence and trends of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates over the past 10-years in Turkey: A meta-analysis. J Glob Antimicrob Resist 18:64–70

    Article  PubMed  Google Scholar 

  28. Liew SM et al (2019) Antimicrobial susceptibility and virulence genes of clinical and environmental isolates of Pseudomonas aeruginosa. PeerJ 7:e6217–e6217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Choudhary V, Pal N, Hooja S (2019) Prevalence and antibiotic resistance pattern of Metallo-β-lactamase-producing Pseudomonas aeruginosa isolates from clinical specimens in a tertiary care hospital. J Mahatma Gandhi Inst Med Sci 24(1):19–22

    Article  Google Scholar 

  30. Ghasemian A et al (2018) Prevalence of clinically isolated metallo-beta-lactamase-producing Pseudomonas aeruginosa, coding genes, and possible risk factors in Iran. Iran J Pathol 13(1):1–9

    Article  PubMed  Google Scholar 

  31. Hwang W, Yoon SS (2019) Virulence characteristics and an action mode of antibiotic resistance in multidrug-resistant Pseudomonas aeruginosa. Sci Rep 9(1):487–487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tahmasebi H et al (2019) Role and function of KPC and MBL enzymes in increasing the pathogenicity of Pseudomonas aeruginosa isolated from burn wounds. J Babol Univ Med Sci 21(1):127–134

    Google Scholar 

  33. El-Aziz NKA, El-Hamid MIA, El-Naenaeey E-SY (2018) A complex hierarchical quorum-sensing circuitry modulates phenazine gene expression in Pseudomonas aeruginosa. J Infect Dev Ctries 11(12):919–925

    Article  CAS  Google Scholar 

  34. Hwang S et al (2016) Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa. Sci Rep 6:26223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rossi Gonçalves I et al (2017) Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz J Microbiol 48(2):211–217

    Article  PubMed  CAS  Google Scholar 

  36. Al Dawodeyah HY et al (2018) Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection. Germs 8(1):31–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lee J-Y, Peck KR, Ko KS (2013) Selective advantages of two major clones of carbapenem-resistant Pseudomonas aeruginosa isolates (CC235 and CC641) from Korea: antimicrobial resistance, virulence and biofilm-forming activity. J Med Microbiol 62(7):1015–1024

    Article  CAS  PubMed  Google Scholar 

  38. Beceiro A, Tomás M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26(2):185–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rampioni G et al (2017) Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulence. Sci Rep 7(1):11392–11392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Alcalde-Rico M et al (2016) Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol 7:1483

    Article  PubMed  PubMed Central  Google Scholar 

  41. Poole K (2011) Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Telling K et al (2018) Multidrug resistant Pseudomonas aeruginosa in Estonian hospitals. BMC Infect Dis 18(1):513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guzvinec M et al (2014) Sequence types 235, 111, and 132 predominate among multidrug-resistant Pseudomonas aeruginosa clinical isolates in Croatia. Antimicrob Agents Chemother 58(10):6277–6283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Boehmer T et al (2018) Phenotypic characterization and whole genome analysis of extended-spectrum beta-lactamase-producing bacteria isolated from dogs in Germany. PLoS ONE 13(10):e0206252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Vatansever C et al (2020) Co-existence of OXA-48 and NDM-1 in colistin resistant Pseudomonas aeruginosa ST235. Emerg Microbes Infect 9(1):152–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen SH et al (2014) Multilocus sequencing typing of Pseudomonas aeruginosa isolates and analysis of potential pathogenicity of typical genotype strains from occupational oxyhelium saturation divers. Undersea Hyperb Med 41(2):135–141

    CAS  PubMed  Google Scholar 

  47. Ocampo-Sosa AA et al (2015) Draft genome sequence of the quorum-sensing and biofilm-producing Pseudomonas aeruginosa strain Pae221, belonging to the epidemic high-risk clone sequence type 274. Genome Announc 3(1):e01343–e1414

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors of this article are grateful to Hamadan University of Medical Sciences for their financial support.

Funding

This work was supported by the Research Centre of Hamadan University of Medical Sciences on the Grant Number 9510075755. This funding's devoted just to purchasing materials used in our study.

Author information

Authors and Affiliations

Authors

Contributions

SD performed microbiological and molecular tests and wrote the manuscript. MRA supervised all of the stages of designing the study, conducting the research, and writing the manuscript. MRP, MYA and SSA play a role in Project Administration.

Corresponding author

Correspondence to Mohammad Reza Arabestani.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Ethics approval

This study was approved by the Ethics Committee of Hamadan University of Medical Sciences (Code No: IR.UMSHA.REC.1395402.) about the consent to participate is not applicable.

Consent for publication

Not Applicable.

Research involving Human Participants and/or Animals

In this study, there isn’t any research involving Human participant or animals.

Informed consent

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehbashi, S., Pourmand, M.R., Alikhani, M.Y. et al. Coordination of las regulated virulence factors with Multidrug-Resistant and extensively drug-resistant in superbug strains of P. aeruginosa. Mol Biol Rep 47, 4131–4143 (2020). https://doi.org/10.1007/s11033-020-05559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05559-4

Keywords

Navigation