Skip to main content

Advertisement

Log in

TP53 genetic polymorphisms and susceptibility to cervical cancer in Bangladeshi women: a case–control study

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Pharmacogenetic study of TP53 gene polymorphisms has not been conducted extensively in cervical cancer. The aim of this study was to assesses the TP53 codon 72 and codon 47 polymorphisms and their relation to cervical cancer risk in Bangladeshi women. 134 cervical cancer patients and 102 age matched healthy controls were included from two institutions in Bangladesh. Polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP) method was used for genotyping two TP53 single nucleotide polymorphisms (codon 72 and codon 47) in patients and controls. The results indicate that the TP53 Arg/Pro heterozygosity (adjusted OR   2.32, 95% CI  1.28–4.34, p = 0.01), Pro/Pro mutant homozygosity (adjusted OR  4.15, 95% CI  1.75–9.86, p = 0.001), along with the combined genotype (Arg/Pro + Pro/Pro) (adjusted OR  2.83, 95% CI  1.61–4.97, p < 0.001) significantly increases the risk of cervical cancer. Moreover, the cervical cancer patients with a first-degree relative cancer patient possesses 4.45 folds more risk (p = 0.019) of carrying a proline allele in codon 72 of the TP53 gene compared to those patients who do not have any first-degree relative with cancer. Finally, polymorphism in the codon 47 of the TP53 gene did not significantly increase the risk of cervical cancer in Bangladeshi women. To conclude, this is the first study to identify that polymorphism in the TP53 codon 72 significantly increases the risk of cervical cancer in a female population in Bangladesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. GLOBOCAN (2018) Cervix Uteri Fact Sheet. https://gco.iarc.fr/today/data/factsheets/cancers/23-Cervix-uteri-fact-sheet.pdf. Accessed 20 Apr 2020

  2. Bruni L, Albero G, Serrano B, Mena M, Gómez D, Muñoz J, Bosch FX, de Sanjosé S. ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre) (2019) Human papillomavirus and related diseases in Bangladesh. https://hpvcentre.net/statistics/reports/BGD.pdf. Accessed 20 Apr 2020

  3. Schiffman MH, Bauer HM, Hoover RN et al (1993) Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J Natl Cancer Inst 85:958–964. https://doi.org/10.1093/jnci/85.12.958

    Article  CAS  PubMed  Google Scholar 

  4. Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1%3c12:AID-PATH431%3e3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  5. Hariri S, Unger ER, Sternberg M et al (2011) Prevalence of genital human papillomavirus among females in the United States, the national health and nutrition examination survey, 2003–2006. J Infect Dis 204:566–573. https://doi.org/10.1093/infdis/jir341

    Article  PubMed  Google Scholar 

  6. Ho GY, Bierman R, Beardsley L et al (1998) Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med 338:423–428. https://doi.org/10.1056/NEJM199802123380703

    Article  CAS  PubMed  Google Scholar 

  7. Kang S, Roh JW, Kim JW (2005) Single nucleotide polymorphism: a new risk factor for endometrial cancer? Future Oncol Lond Engl 1:323–330. https://doi.org/10.1517/14796694.1.3.323

    Article  CAS  Google Scholar 

  8. Magnusson PK, Lichtenstein P, Gyllensten UB (2000) Heritability of cervical tumours. Int J Cancer 88:698–701. https://doi.org/10.1002/1097-0215(20001201)88:5%3c698:aid-ijc3%3e3.0.co;2-j

    Article  CAS  PubMed  Google Scholar 

  9. Alsbeih GA, Al-Harbi NM, Bin Judia SS et al (2017) Reduced rate of human papillomavirus infection and genetic overtransmission of TP53 72C polymorphic variant lower cervical cancer incidence. Cancer 123:2459–2466. https://doi.org/10.1002/cncr.30635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu G-C, Zhou Y-F, Su X-C, Zhang J (2019) Interaction between TP53 and XRCC1 increases susceptibility to cervical cancer development: a case control study. BMC Cancer 19:24. https://doi.org/10.1186/s12885-018-5149-0

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sabapathy K, Lane DP (2018) Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol 15:13–30. https://doi.org/10.1038/nrclinonc.2017.151

    Article  CAS  PubMed  Google Scholar 

  12. Mostaid MS, Ahmed MU, Islam MS et al (2014) Lung cancer risk in relation to TP53 codon 47 and codon 72 polymorphism in Bangladeshi population. Tumour Biol J Int Soc Oncodevelopmental Biol Med 35:10309–10317. https://doi.org/10.1007/s13277-014-2285-2

    Article  CAS  Google Scholar 

  13. Rivu SF, Apu MNH, Shabnaz S et al (2017) Association of TP53 codon 72 and CDH1 genetic polymorphisms with colorectal cancer risk in Bangladeshi population. Cancer Epidemiol 49:46–52. https://doi.org/10.1016/j.canep.2017.05.005

    Article  PubMed  Google Scholar 

  14. Shi Q, Xiao K, Wei W et al (2013) Associations of TP53 mutations, codon 72 polymorphism and human papillomavirus in head and neck squamous cell carcinoma patients. Oncol Rep 30:2811–2819. https://doi.org/10.3892/or.2013.2750

    Article  CAS  PubMed  Google Scholar 

  15. Lahsen AO, Baba H, Bensghir R et al (2017) TP53 R72P polymorphism and susceptibility to human papillomavirus infection among women with human immunodeficiency virus in Morocco: a case-control study. J Cancer Prev 22:248–253. https://doi.org/10.15430/JCP.2017.22.4.248

    Article  PubMed  PubMed Central  Google Scholar 

  16. Laprano TDR, Lemos EH, Cunha LMP et al (2014) Association of TP53 codon 72 and intron 3 16-bp Ins/Del polymorphisms with cervical cancer risk. Tumour Biol J Int Soc Oncodev Biol Med 35:7435–7440. https://doi.org/10.1007/s13277-014-1988-8

    Article  CAS  Google Scholar 

  17. Storey A, Thomas M, Kalita A et al (1998) Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature 393:229–234. https://doi.org/10.1038/30400

    Article  CAS  PubMed  Google Scholar 

  18. Li B, Wang X, Chen H et al (2015) TP53 codon 72 polymorphism and susceptibility to cervical cancer in the Chinese population: an update meta-analysis. Int J Clin Exp Med 8:9055–9062

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Malisic E, Jankovic R, Brotto K, Radulovic S (2013) TP53 codon 72 polymorphism and risk of cervical carcinoma in Serbian women. Arch Gynecol Obstet 288:621–625. https://doi.org/10.1007/s00404-013-2783-2

    Article  CAS  PubMed  Google Scholar 

  20. Zhou X, Gu Y, Zhang S-L (2012) Association between p53 codon 72 polymorphism and cervical cancer risk among Asians: a HuGE review and meta-analysis. Asian Pac J Cancer Prev APJCP 13:4909–4914. https://doi.org/10.7314/apjcp.2012.13.10.4909

    Article  PubMed  Google Scholar 

  21. Felley-Bosco E, Weston A, Cawley HM et al (1993) Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. Am J Hum Genet 53:752–759

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li X, Dumont P, Della Pietra A et al (2005) The codon 47 polymorphism in p53 is functionally significant. J Biol Chem 280:24245–24251. https://doi.org/10.1074/jbc.M414637200

    Article  CAS  PubMed  Google Scholar 

  23. Sameer AS, Shah ZA, Syeed N et al (2010) TP53 Pro47Ser and Arg72Pro polymorphisms and colorectal cancer predisposition in an ethnic Kashmiri population. Genet Mol Res GMR 9:651–660. https://doi.org/10.4238/vol9-2gmr751

    Article  CAS  PubMed  Google Scholar 

  24. Howlader N, Noone AM, Krapcho M, Miller D et al (2017) Cancer statistics review, 1975–2014—SEER Statistics. Natl Cancer Inst Bethesda MD Httpsseercancergovcsr19752014 Based Novemb 2016 SEER Data Submiss Posted SEER Web Site April 2017

  25. World Medical Association (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194. https://doi.org/10.1001/jama.2013.281053

    Article  CAS  Google Scholar 

  26. Daly AK, Monkman SC, Smart J et al (1998) Analysis of cytochrome P450 polymorphisms. Methods Mol Biol Clifton NJ 107:405–422. https://doi.org/10.1385/0-89603-519-0:405

    Article  CAS  Google Scholar 

  27. Skegg DCG (2002) Oral contraceptives, parity, and cervical cancer. Lancet Lond Engl 359:1080–1081. https://doi.org/10.1016/S0140-6736(02)08125-4

    Article  Google Scholar 

  28. Smith JS, Green J, Berrington de Gonzalez A et al (2003) Cervical cancer and use of hormonal contraceptives: a systematic review. Lancet Lond Engl 361:1159–1167. https://doi.org/10.1016/s0140-6736(03)12949-2

    Article  Google Scholar 

  29. Suri V, Arora A (2015) Management of endometrial cancer: a review. Rev Recent Clin Trials 10:309–316

    Article  Google Scholar 

  30. Shabnaz S, Ahmed MU, Islam MS et al (2016) Breast cancer risk in relation to TP53 codon 72 and CDH1 gene polymorphisms in the Bangladeshi women. Tumour Biol J Int Soc Oncodev Biol Med 37:7229–7237. https://doi.org/10.1007/s13277-015-4612-7

    Article  CAS  Google Scholar 

  31. Stracquadanio G, Wang X, Wallace MD et al (2016) The importance of p53 pathway genetics in inherited and somatic cancer genomes. Nat Rev Cancer 16:251–265. https://doi.org/10.1038/nrc.2016.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Soussi T, Lozano G (2005) p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 331:834–842. https://doi.org/10.1016/j.bbrc.2005.03.190

    Article  CAS  PubMed  Google Scholar 

  33. Dumont P, Leu JI-J, Della Pietra AC et al (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33:357–365. https://doi.org/10.1038/ng1093

    Article  CAS  PubMed  Google Scholar 

  34. Leu JI-J, Dumont P, Hafey M et al (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6:443–450. https://doi.org/10.1038/ncb1123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the patients, their families, volunteers, nurses, physicians, collaborators, and scientists of the National institute of Cancer Research and Hospital (NICHR) and Bangabandhu Sheikh Mujib Medical University (BSMMU). The authors would also like to thank the Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Bangladesh to provide lab facilities and other opportunities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Shaki Mostaid.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

The current study was in accordance with the declaration of Helsinki and its further amendments and the ethical committee of the participating hospital approved the study protocol. Each patient and control subject signed an informed consent document after they were informed of the study objectives.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apu, M.N.H., Rashed, A.Z.M., Bashar, T. et al. TP53 genetic polymorphisms and susceptibility to cervical cancer in Bangladeshi women: a case–control study. Mol Biol Rep 47, 4357–4364 (2020). https://doi.org/10.1007/s11033-020-05523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05523-2

Keywords

Navigation