Skip to main content
Log in

Expression of actively soluble antigen-binding fragment (Fab) antibody and GFP fused Fab in the cytoplasm of the engineered Escherichia coli

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The expression of recombinant antibody fragments in the cytoplasmic space of Escherichia coli and the refolding process for restoring the structure and activity of such antibodies are not efficient. Herein, fragment antigen-binding (Fab) antibodies against miroestrol and deoxymiroestrol (MD-Fab) and their fusions with a green fluorescent protein (GFP) were expressed. The reactive MD-Fabs were successfully expressed as soluble and active forms in the cytoplasm of the SHuffle® T7 E. coli strain. Regarding the construct of MD-Fab alone, VH–CH1 could associate VL–CL into Fab in the oxidizing cytoplasm of the E. coli strain, and no additional in vitro refolding was needed. In the case of the fusions with GFP, when the C-terminus of VH–CH1 was linked with the N-terminus of GFP, the MD-Fab binding reactivity was retained, but the fluorescent activity of GFP interfered. When the C-terminus of GFP was linked to the N-terminus of VL–CL, the binding activity of MD-Fab was not observed. The constructed MD-Fabs had higher specificity toward deoxymiroestrol than the parental monoclonal antibody clone 12G11. In conclusion, MD-Fabs could be expressed using SHuffle® T7 E. coli cells. This process could be considered an economical, productive, and effective method to produce antibody fragments for immunoassay techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Frenzel A, Hust M, Schirrmann T (2013) Expression of recombinant antibodies. Front Immunol 4:217. https://doi.org/10.3389/fimmu.2013.00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sockolosky JT, Szoka FC (2013) Periplasmic production via the pET expression system of soluble, bioactive human growth hormone. Protein Expres Purif 87(2):129–135. https://doi.org/10.1016/j.pep.2012.11.002

    Article  CAS  Google Scholar 

  3. Robinson MP, Ke N, Lobstein J, Peterson C, Szkodny A, Mansell TJ, Tuckey C, Riggs PD, Colussi PA, Noren CJ, Taron CH, DeLisa MP, Berkmen M (2015) Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat Commun 6(1):8072. https://doi.org/10.1038/ncomms9072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 11:56. https://doi.org/10.1186/1475-2859-11-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yusakul G, Kitisripanya T, Juengwatanatrakul T, Sakamoto S, Tanaka H, Putalun W (2018) Enzyme linked immunosorbent assay for total potent estrogenic miroestrol and deoxymiroestrol of Pueraria candollei, a Thai herb for menopause remedy. J Nat Med 72(3):641–650. https://doi.org/10.1007/s11418-018-1194-x

    Article  CAS  PubMed  Google Scholar 

  6. Sakamoto S, Taura F, Putalun W, Pongkitwitoon B, Tsuchihashi R, Morimoto S, Kinjo J, Shoyama Y, Tanaka H (2009) Construction and expression of specificity-improved single-chain variable fragments against the bioactive naphthoquinone, plumbagin. Biol Pharm Bull 32(3):434–439. https://doi.org/10.1248/bpb.32.434

    Article  CAS  PubMed  Google Scholar 

  7. Pongkitwitoon B, Sakamoto S, Morinaga O, Juengwatanatrakul T, Shoyama Y, Tanaka H, Morimoto S (2011) Single-chain variable fragment antibody against ginsenoside Re as an effective tool for the determination of ginsenosides in various ginsengs. J Nat Med 65(1):24–30. https://doi.org/10.1007/s11418-010-0446-1

    Article  CAS  PubMed  Google Scholar 

  8. Yusakul G, Nuntawong P, Sakamoto S, Ratnatilaka Na Bhuket P, Kohno T, Kikkawa N, Rojsitthisak P, Shimizu K, Tanaka H, Morimoto S (2017) Bacterial expression of a single-chain variable fragment (scFv) antibody against ganoderic acid A: a cost-effective approach for quantitative analysis using the scFv-based enzyme-linked immunosorbent assay. Biol Pharm Bull 40(10):1767–1774. https://doi.org/10.1248/bpb.b17-00531

    Article  CAS  PubMed  Google Scholar 

  9. Paudel MK, Sakamoto S, Van Huy L, Tanaka H, Miyamoto T, Morimoto S (2017) The effect of varying the peptide linker length in a single chain variable fragment antibody against wogonin glucuronide. J Biotechnol 251:47–52. https://doi.org/10.1016/j.jbiotec.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  10. Yusakul G, Sakamoto S, Nuntawong P, Tanaka H, Morimoto S (2018) Different expression systems resulted in varied binding properties of anti-paclitaxel single-chain variable fragment antibody clone 1C2. J Nat Med 72(1):310–316. https://doi.org/10.1007/s11418-017-1136-z

    Article  CAS  PubMed  Google Scholar 

  11. Huang D, Shusta EV (2006) A yeast platform for the production of single-chain antibody-green fluorescent protein fusions. Appl Environ Microbiol 72(12):7748–7759. https://doi.org/10.1128/AEM.01403-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niemantsverdriet M, Backendorf C (2008) TwinGFP, a marker for cell cycle analysis in transiently transfected cells. Anal Biochem 375(2):173–178. https://doi.org/10.1016/j.ab.2008.01.015

    Article  CAS  PubMed  Google Scholar 

  13. Richards HA, Halfhill MD, Millwood RJ, Stewart CN Jr (2003) Quantitative GFP fluorescence as an indicator of recombinant protein synthesis in transgenic plants. Plant Cell Rep 22(2):117–121. https://doi.org/10.1007/s00299-003-0638-1

    Article  CAS  PubMed  Google Scholar 

  14. Jeong GM, Kim YS, Jeong KJ (2014) A human kringle domain-based fluorescence-linked immunosorbent assay system. Anal Biochem 451:63–68. https://doi.org/10.1016/j.ab.2014.01.019

    Article  CAS  PubMed  Google Scholar 

  15. Chandeying V, Lamlertkittikul S (2007) Challenges in the conduct of Thai herbal scientific study: efficacy and safety of phytoestrogen, Pueraria mirifica (Kwao Keur Kao), phase I, in the alleviation of climacteric symptoms in perimenopausal women. J Med Assoc Thai 90(7):1274–1280

    PubMed  Google Scholar 

  16. Manonai J, Chittacharoen A, Theppisai U, Theppisai H (2007) Effect of Pueraria mirifica on vaginal health. Menopause 14(5):919–924. https://doi.org/10.1097/gme.0b013e3180399486

    Article  PubMed  Google Scholar 

  17. Okamura S, Sawada Y, Satoh T, Sakamoto H, Saito Y, Sumino H, Takizawa T, Kogure T, Chaichantipyuth C, Higuchi Y, Ishikawa T, Sakamaki T (2008) Pueraria mirifica phytoestrogens improve dyslipidemia in postmenopausal women probably by activating estrogen receptor subtypes. Tohoku J Exp Med 216(4):341–351. https://doi.org/10.1620/tjem.216.341

    Article  PubMed  Google Scholar 

  18. Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, Pluckthun A (1997) Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods 201(1):35–55. https://doi.org/10.1016/s0022-1759(96)00208-6

    Article  CAS  PubMed  Google Scholar 

  19. Engberg J, Jensen LB, Yenidunya AF, Brandt K, Riise E (2001) Phage-display libraries of murine antibody Fab fragments. In: Kontermann R, Dübel S (eds) Antibody engineering. Springer, Berlin, pp 65–92

    Chapter  Google Scholar 

  20. Kram KE, Finkel SE (2015) Rich medium composition affects Escherichia coli survival, glycation, and mutation frequency during long-term batch culture. Appl Environ Microbiol 81(13):4442–4450. https://doi.org/10.1128/AEM.00722-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chan CE, Lim AP, Chan AH, MacAry PA, Hanson BJ (2010) Optimized expression of full-length IgG1 antibody in a common E. coli strain. PLoS ONE 5(4):e10261. https://doi.org/10.1371/journal.pone.0010261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krittanai S, Kitisripanya T, Udomsin O, Tanaka H, Sakamoto S, Juengwatanatrakul T, Putalun W (2018) Development of a colloidal gold nanoparticle-based immunochromatographic strip for the one-step detection of miroestrol and puerarin. Biomed Chromatogr 32(11):e4330. https://doi.org/10.1002/bmc.4330

    Article  CAS  PubMed  Google Scholar 

  23. Pongkitwitoon B, Boonsnongcheep P, Kitisripanya T, Yusakul G, Sakamoto S, Tanaka H, Morimoto S, Putalun W (2019) Preparation of a highly specific single chain variable fragment antibody targeting miroestrol and its application in quality control of Pueraria candollei by enzyme-linked immunosorbent assay. Phytochem Anal 30(6):600–608. https://doi.org/10.1002/pca.2832

    Article  CAS  PubMed  Google Scholar 

  24. Jansen EJ, van Bakel NH, Olde Loohuis NF, Hafmans TG, Arentsen T, Coenen AJ, Scheenen WJ, Martens GJ (2012) Identification of domains within the V-ATPase accessory subunit Ac45 involved in V-ATPase transport and Ca2+-dependent exocytosis. J Biol Chem 287(33):27537–27546. https://doi.org/10.1074/jbc.M112.356105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yi KS, Chung J, Park KH, Kim K, Im SY, Choi CY, Im MJ, Kim UH (2004) Expression system for enhanced green fluorescence protein conjugated recombinant antibody fragment. Hybrid Hybridomics 23(5):279–286. https://doi.org/10.1089/hyb.2004.23.279

    Article  CAS  PubMed  Google Scholar 

  26. Yusakul G, Sakamoto S, Tanaka H, Morimoto S (2018) Improvement of heavy and light chain assembly by modification of heavy chain constant region 1 (CH1): application for the construction of an anti-paclitaxel fragment antigen-binding (Fab) antibody. J Biotechnol 288:41–47. https://doi.org/10.1016/j.jbiotec.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  27. Huang Z, Li G, Zhang C, Xing XH (2016) A study on the effects of linker flexibility on acid phosphatase PhoC-GFP fusion protein using a novel linker library. Enzyme Microb Technol 83:1–6. https://doi.org/10.1016/j.enzmictec.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  28. Levy R, Weiss R, Chen G, Iverson BL, Georgiou G (2001) Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr Purif 23(2):338–347. https://doi.org/10.1006/prep.2001.1520

    Article  CAS  PubMed  Google Scholar 

  29. Robinson MP, Ke N, Lobstein J, Peterson C, Szkodny A, Mansell TJ, Tuckey C, Riggs PD, Colussi PA, Noren CJ, Taron CH, DeLisa MP, Berkmen M (2015) Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat Commun 6:8072. https://doi.org/10.1038/ncomms9072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sakamoto S, Pongkitwitoon B, Nakahara H, Shibata O, Shoyama Y, Tanaka H, Morimoto S (2012) Fluobodies against bioactive natural products and their application in fluorescence-linked immunosorbent assay. Antibodies 1(2):239–258

    Article  CAS  Google Scholar 

  31. Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J (2008) Heterogeneity of monoclonal antibodies. J Pharm Sci 97(7):2426–2447. https://doi.org/10.1002/jps.21180

    Article  CAS  PubMed  Google Scholar 

  32. Cacia J, Keck R, Presta LG, Frenz J (1996) Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity. Biochemistry 35(6):1897–1903. https://doi.org/10.1021/bi951526c

    Article  CAS  PubMed  Google Scholar 

  33. Rehder DS, Chelius D, McAuley A, Dillon TM, Xiao G, Crouse-Zeineddini J, Vardanyan L, Perico N, Mukku V, Brems DN, Matsumura M, Bondarenko PV (2008) Isomerization of a single aspartyl residue of anti-epidermal growth factor receptor immunoglobulin gamma2 antibody highlights the role avidity plays in antibody activity. Biochemistry 47(8):2518–2530. https://doi.org/10.1021/bi7018223

    Article  CAS  PubMed  Google Scholar 

  34. Yan Y, Wei H, Fu Y, Jusuf S, Zeng M, Ludwig R, Krystek SR Jr, Chen G, Tao L, Das TK (2016) Isomerization and oxidation in the complementarity-determining regions of a monoclonal antibody: a study of the modification-structure-function correlations by hydrogen-deuterium exchange mass spectrometry. Anal Chem 88(4):2041–2050. https://doi.org/10.1021/acs.analchem.5b02800

    Article  CAS  PubMed  Google Scholar 

  35. Macek B, Forchhammer K, Hardouin J, Weber-Ban E, Grangeasse C, Mijakovic I (2019) Protein post-translational modifications in bacteria. Nat Rev Microbiol 17(11):651–664. https://doi.org/10.1038/s41579-019-0243-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express gratitude to Dr. Chaiyo Chaichantipyuth, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Thailand, for authentic standards.

Funding

This research was supported by the Faculty of Pharmaceutical Sciences, Graduate School of Khon Kaen University, Thailand (Grant Number 590H11), and the National Research Council of Thailand (NRCT). This research was partially supported by the new strategic research (P2P) project, Walailak University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorawit Yusakul.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Research involving human participants and/or animals

There is no research involving human participants and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krittanai, S., Putalun, W., Sakamoto, S. et al. Expression of actively soluble antigen-binding fragment (Fab) antibody and GFP fused Fab in the cytoplasm of the engineered Escherichia coli. Mol Biol Rep 47, 4519–4529 (2020). https://doi.org/10.1007/s11033-020-05502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05502-7

Keywords

Navigation