Skip to main content
Log in

Expression dynamics of solute carrier family 15 member 4 (SLC15A4) and its potential regulatory role in ovarian development of the Indian white shrimp, Penaeus indicus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Solute carrier proteins (SLC) are essential membrane transport proteins responsible for transporting lipids, amino acids, sugars, neurotransmitters, and drugs across the biological membranes. Dysfunction of these carrier proteins may lead to an imbalance of biological mechanisms and also in the failure of the transporting pathways of several signaling neurotransmitters. In the present study, a 646 bp of a solute carrier protein (SLC15A4) was cloned and sequenced from the Indian white shrimp, Penaeus indicus. Multiple sequence alignment using ClustalW and phylogenetic analysis of putative SLC15A4 fragment from P. indicus (PiSLC15A4) was performed using Mega X tool. Tissue distribution analysis was carried out using real-time PCR. The differential expressions of PiSLC15A4 were also analyzed in the ovaries and brain tissues of wild-caught female shrimps at different maturation stages and in the brain tissues of captive females subjected to induce maturation by eyestalk ablation. Significant diversity in SLC15A4 sequence obtained from P. indicus was observed when compared to the other species. Tissue distribution analysis confirmed the ubiquitous expression of PiSLC15A4 in all the tissues examined. The differential expressions of PiSLC15A4 indicated higher expression of the gene in brain tissue of females at the vitellogenic stage, while the expressions in ovaries were significantly higher in the immature stage. The differential expressions of PiSLC15A4 in the brain tissues were substantially higher in eyestalk ablated shrimps compared to the eyestalk intact females. The study suggests a role for SLC15A4 in the endocrine signaling pathways stimulating ovarian maturation in P. indicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

aa:

Amino acid

bp:

Base pair

cdc2 :

Cyclin dependent kinase 2

cDNA:

DNA complementary to RNA

EF:

Elongation factor

ESA:

Eyestalk ablation

GIH:

Gonad-Inhibiting Hormone

kDa:

Kilodalton

MFS:

Major facilitator superfamily

PCR:

Polymerase chain reaction

POT:

Proton-dependent oligopeptide transport

qPCR:

Quantitative real-time PCR

SERT:

Serotonin transporter

SLC:

Solute carrier protein

References

  1. Hediger MA, Romero MF, Andreas JP et al (2004) The ABCs of solute carriers : physiological, pathological and therapeutic implications of human membrane transport proteins. Pflug Arch 447:465–468. https://doi.org/10.1007/s00424-003-1192-y

    Article  CAS  Google Scholar 

  2. Fredriksson R, Nordström KJV, Stephansson O et al (2008) The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett 582:3811–3816. https://doi.org/10.1016/j.febslet.2008.10.016

    Article  CAS  PubMed  Google Scholar 

  3. Bai X, Moraes TF, Reithmeier RAF (2018) Structural biology of solute carrier (SLC) membrane transport proteins. Mol Membr Biol 34:1–32. https://doi.org/10.1080/09687688.2018.1448123

    Article  CAS  Google Scholar 

  4. Fotiadis D, Kanai Y, Palacin M (2013) The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 34:139–158. https://doi.org/10.1016/j.mam.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  5. Newstead S, Drew D, Cameron AD et al (2011) Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J 30:417–426. https://doi.org/10.1038/emboj.2010.309

    Article  CAS  PubMed  Google Scholar 

  6. Solcan N, Kwok J, Fowler PW et al (2012) Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 31:3411–3421. https://doi.org/10.1038/emboj.2012.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doki S, Kato HE, Solcan N et al (2013) Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proc Natl Acad Sci USA 110:11343–113438. https://doi.org/10.1073/pnas.1301079110

    Article  PubMed  Google Scholar 

  8. Guettou F, Quistgaard EM, Tresaugues L et al (2013) Structural insights into substrate recognition in proton-dependent oligopeptide transporters. EMBO Rep 14:804–810. https://doi.org/10.1038/embor.2013.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lyons JA, Parker JL, Solcan N et al (2014) Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters. EMBO Rep 15:886–893. https://doi.org/10.15252/embr.201338403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malinauskaite L, Said S, Sahin C, Grouleff J, Shahsavar A, Bjerregaard H et al (2016) A conserved leucine occupies the empty substrate site of LeuT in the Na+ -free return state. Nat Commun 7:11673. https://doi.org/10.1038/ncomms11673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu KH, Tsay YF (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J 22:1005–1013. https://doi.org/10.1093/emboj/cdg118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sasawatari S, Okamura T, Kasumi E et al (2011) The solute carrier family 15A4 regulates TLR9 and NOD1 functions in the innate immune system and promotes colitis in mice. Gastroenterology 140:1513–1525. https://doi.org/10.1053/j.gastro.2011.01.041

    Article  CAS  Google Scholar 

  13. Gilbert ER, Li H, Emmerson DA et al (2007) Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers. Poult Sci 86:1739–1753. https://doi.org/10.1093/ps/86.8.1739

    Article  CAS  PubMed  Google Scholar 

  14. Smith DE, Clemençon B, Hediger MA (2013) Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med 34:323–336. https://doi.org/10.1016/j.mam.2012.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun J, Bankston JR, Payandeh J et al (2014) Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507:73–77. https://doi.org/10.1038/nature13074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lim C, Jeong W, Lim W et al (2012) Differential expression of select members of the SLC family of genes and regulation of expression by microRNAs in the chicken oviduct. Biol Reprod 87:1–9. https://doi.org/10.1095/biolreprod.112.101444

    Article  CAS  Google Scholar 

  17. Yamashita T, Shimada S, Guo W et al (1997) Cloning and functional expression of a brain peptide/histidine transporter. J Biol Chem 272:10205–10211. https://doi.org/10.1074/jbc.272.15.10205

    Article  CAS  PubMed  Google Scholar 

  18. Nakamura N, Lill JR, Phung Q et al (2014) Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509:240–244. https://doi.org/10.1038/nature13133

    Article  CAS  Google Scholar 

  19. Chen Y, Yuan K, Zhang Z et al (2016) Identification and functional characterization of a solute carrier family 15, member 4 gene in Litopenaeus vannamei. Dev Comp Immunol 57:57–66. https://doi.org/10.1016/j.dci.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  20. Mann DR, Ansari AA, Akinbami MA et al (1994) Neonatal treatment with luteinizing hormone-releasing hormone analogs alters peripheral lymphocyte subsets and cellular and humorally mediated immune responses in juvenile and adult male monkeys. J Clin Endocrinol Metab 78:292–298. https://doi.org/10.1210/jcem.78.2.8106614

    Article  CAS  PubMed  Google Scholar 

  21. Adashi EY (1990) The potential relevance of cytokines to ovarian physiology: the emerging role of resident ovarian cells of the white blood cell series. Endocr Rev 11:454–464. https://doi.org/10.1210/edrv-11-3-454

    Article  CAS  PubMed  Google Scholar 

  22. Liu Z, Shimada M, Richards JS (2008) The involvement of the Toll-like receptor family in ovulation. J Assist Reprod Genet 25:223–228. https://doi.org/10.1007/s10815-008-9219-0

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gx E, Zhao YJ, Ma YH et al (2016) Differential expression of Toll-like receptors in goat dominant and nondominant follicles. Genet Mol Res 15:gmr15049157. https://doi.org/10.4238/gmr15049157

    Article  CAS  Google Scholar 

  24. Assavalapsakul W, Panyim S (2012) Molecular cloning and tissue distribution of the Toll receptor in the black tiger shrimp, Penaeus monodon. Genet Mol Res 11:484–493. https://doi.org/10.4238/2012.March.6.1

    Article  CAS  PubMed  Google Scholar 

  25. Peng J, Wei P, Zhang B et al (2015) Gonadal transcriptomic analysis and differentially expressed genes in the testis and ovary of the Pacific white shrimp (Litopenaeus vannamei). BMC Genomics 16:1006. https://doi.org/10.1186/s12864-015-2219-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao J, Wang X, Zou Z et al (2014) Transcriptome analysis of the differences in gene expression between testis and ovary in green mud crab (Scylla paramamosain). BMC Genomics 15:585. https://doi.org/10.1186/1471-2164-15-585

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bastos AM, Lima JF, Tavares-Dias M (2018) Unilateral eyestalk ablation improves molting frequency and reproduction in Macrobrachium amazonicum females. J Appl Aquac 30:337–352. https://doi.org/10.1080/10454438.2018.1493016

    Article  Google Scholar 

  28. Tomy S, Saikrithi P, James N et al (2016) Serotonin induced changes in the expression of ovarian gene network in the Indian white shrimp, Penaeus indicus. Aquaculture 452:239–246. https://doi.org/10.1016/j.aquaculture.2015.11.003

    Article  CAS  Google Scholar 

  29. Kobayashi T, Shimabukuro-Demoto S, Yoshida-Sugitani R et al (2014) The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity 41:375–388. https://doi.org/10.1016/j.immuni.2014.08.011

    Article  CAS  Google Scholar 

  30. He L, Vasiliou K, Nebert DW (2009) Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics 3:195. https://doi.org/10.1186/1479-7364-3-2-195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu Y, Song F, Jiang H et al (2018) SLC15A2 and SLC15A4 mediate the transport of bacterially derived Di/Tripeptides to enhance the nucleotide-binding oligomerization domain–dependent immune response in mouse bone marrow–derived macrophages. J Immunol 201:652–662. https://doi.org/10.4049/jimmunol.1800210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arjona FJ, de Vrieze E, Visser TJ et al (2011) Identification and functional characterization of zebrafish solute carrier Slc16a2 (Mct8) as a thyroid hormone membrane transporter. Endocrinology 152:5065–5073. https://doi.org/10.1210/en.2011-1166

    Article  CAS  PubMed  Google Scholar 

  33. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet 20:452–477. https://doi.org/10.2133/dmpk.20.452

    Article  CAS  PubMed  Google Scholar 

  34. Zancanella V, Giantin M, Lopparelli RM et al (2013) Tissue distribution and phenobarbital induction of target SLC- and ABC- transporters in cattle. J Vet Pharmacol Ther 36:358–369. https://doi.org/10.1111/j.1365-2885.2012.01427.x

    Article  CAS  PubMed  Google Scholar 

  35. Botka CW, Wittig TW, Graul RC et al (2000) Human proton/oligopeptide transporter (POT) genes: identification of putative human genes using bioinformatics. AAPS Pharm Sci 2:76. https://doi.org/10.1208/ps020216

    Article  Google Scholar 

  36. Hiratsuka K, Yin S, Ohtomo T, Fujita M (2008) Intratesticular localization of the organic solute carrier protein, OSCP1, in spermatogenic cells in mice. Mol Reprod Dev 75:1495–1504. https://doi.org/10.1002/mrd.20893

    Article  CAS  PubMed  Google Scholar 

  37. Ho HT, Dahlin A, Wang J (2012) Expression profiling of solute carrier gene families at the blood-CSF barrier. Front Pharmacol 3:154. https://doi.org/10.3389/fphar.2012.00154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uawisetwathana U, Leelatanawit R, Klanchui A et al (2011) Insights into eyestalk ablation mechanism to induce ovarian maturation in the black tiger shrimp. PLoS ONE 6:e24427. https://doi.org/10.1371/journal.pone.0024427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bai H, Qiao H, Li F et al (2015) Molecular characterization and developmental expression of vitellogenin in the oriental river prawn Macrobrachium nipponense and the effects of RNA interference and eyestalk ablation on ovarian maturation. Gene 562:22–31. https://doi.org/10.1016/j.gene.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  40. Arnold SJ, Coman GJ, Emerenciano M (2013) Constraints on seedstock production in eighth generation domesticated Penaeus monodon broodstock. Aquaculture 410–411:95–100. https://doi.org/10.1016/j.aquaculture.2013.06.023

    Article  Google Scholar 

  41. Coman GJ, Arnold SJ, Wood AT, Preston NP (2013) Evaluation of egg and nauplii production parameters of a single stock of domesticated Penaeus monodon (Giant Tiger Shrimp) across generations. Aquaculture 400–401:125–128. https://doi.org/10.1016/j.aquaculture.2013.03.015

    Article  Google Scholar 

  42. Heils A, Teufel A, Petri S et al (1996) Allelic variation of human serotonin transporter gene expression. J Neurochem 66:2621–2624. https://doi.org/10.1046/j.1471-4159.1996.66062621.x

    Article  CAS  PubMed  Google Scholar 

  43. Norton WHJ, Folchert A, Bally-Cuif L (2008) Comparative analysis of serotonin receptor (HTR1A/HTR1B families) and transporter (slc6a4a/b) gene expression in the zebrafish brain. J Comp Neurol 511:521–542. https://doi.org/10.1002/cne.21831

    Article  CAS  PubMed  Google Scholar 

  44. Amador MHB, McDonald MD (2018) Molecular and functional characterization of the Gulf toadfish serotonin transporter SLC6A4. J Exp Biol 221:jeb170928. https://doi.org/10.1242/jeb.170928

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, ICAR- Central Institute of Brackishwater Aquaculture, for providing necessary facilities to carry out the research work.

Funding

This research work was supported by the research Grant from Department of Biotechnology, Government of India (BT/PR5284/AAQ/3/593/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherly Tomy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All protocols for the study were approved by ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India. The standard operating procedures followed in the experiment were in accordance to the guidelines set by the Institutional Animal Ethics Committee of CPCSEA (Committee for the Purpose of Control and Supervision of Experiments on Animals), Ministry of Environment Forests and Climate Change, Government of India.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikrithi, P., Balasubramanian, C.P., Otta, S.K. et al. Expression dynamics of solute carrier family 15 member 4 (SLC15A4) and its potential regulatory role in ovarian development of the Indian white shrimp, Penaeus indicus. Mol Biol Rep 47, 3797–3805 (2020). https://doi.org/10.1007/s11033-020-05471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05471-x

Keywords

Navigation