Skip to main content
Log in

Dexmedetomidine alleviates H2O2-induced oxidative stress and cell necroptosis through activating of α2-adrenoceptor in H9C2 cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Oxidative stress induced necroptosis is important in myocardial ischemia/reperfusion injury. Dexmedetomidine (Dex), an α2-adrenoceptor (α2-AR) agonist, has protective effect on oxidative stress induced cell apoptosis, but effects of Dex and Dex-mediated α2-AR activation on oxidant induced necroptosis was unclear. H9C2 cardiomyocytes were pre-treated with or without Dex and α2-AR antagonist yohimbine hydrochloride (YOH) before being exposed to H2O2 to induce oxidative cellular damage. Cell viability and lactate dehydrogenase (LDH) were detected by ELISA kits, protein expressions of Heme Oxygenase 1(HO-1), receptor interacting protein kinase 1 (RIPK1) and receptor interacting protein kinase 3 (RIPK3) were observed by WB, and TUNEL was used to detected cell apoptosis. H2O2 significantly decreased cell viability and increased LDH release and necroptotic and apoptotic cell deaths (all p < 0.05, H2O2 vs. Control). Dex preconditioning alleviated these injuries induced by H2O2. Dex preconditioning significantly increased expression of protein HO-1 and decreased expressions of proteins RIPK1 and RIPK3 induced by H2O2, while all these protective effects of Dex were reversed by YOH (all p < 0.05, Dex + H2O2 vs. H2O2; and YOH + Dex + H2O2 vs. Dex + H2O2). However, YOH did not prevent this protective effect of Dex against H2O2 induced apoptosis (YOH + Dex + H2O2 vs. Dex + H2O2, p > 0.05). These findings indicated that Dex attenuates H2O2 induced cardiomyocyte necroptotic and apoptotic cell death respectively dependently and independently of α2-AR activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609. https://doi.org/10.1152/physrev.00024.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang J, Liu D, Zhang M, Zhang Y (2018) Programmed necrosis in cardiomyocytes: mitochondria, death receptors and beyond. Br J Pharmacol. https://doi.org/10.1111/bph.14363

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Investig 123:92–100. https://doi.org/10.1172/JCI62874

    Article  CAS  PubMed  Google Scholar 

  4. Anderson JL, Morrow DA (2017) Acute myocardial infarction. N Engl J Med 376:2053–2064. https://doi.org/10.1056/NEJMra1606915

    Article  CAS  PubMed  Google Scholar 

  5. Zhu H, Sun A (2018) Programmed necrosis in heart disease: molecular mechanisms and clinical implications. J Mol Cell Cardiol 116:125–134. https://doi.org/10.1016/j.yjmcc.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  6. Zhou T, Chuang CC, Zuo L (2015) Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. Biomed Res Int 2015:864946. https://doi.org/10.1155/2015/864946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li D, Wang X, Huang Q, Li S, Zhou Y, Li Z (2017) Cardioprotection of CAPE-oNO2 against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-kappaB pathway in vivo and in vitro. Redox Biol 15:62–73. https://doi.org/10.1016/j.redox.2017.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kung G, Konstantinidis K, Kitsis RN (2011) Programmed necrosis, not apoptosis, in the heart. Circ Res 108:1017–1036. https://doi.org/10.1161/circresaha.110.225730

    Article  CAS  PubMed  Google Scholar 

  9. Wang JX, Zhang XJ, Li Q, Wang K, Wang Y, Jiao JQ, Feng C, Teng S, Zhou LY, Gong Y, Zhou ZX, Liu J, Wang JL, Li PF (2015) MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ Res 117:352–363. https://doi.org/10.1161/circresaha.117.305781

    Article  CAS  PubMed  Google Scholar 

  10. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang M, Wu H, Guo J, Zhang X, Hu X, Cao CM, Xiao RP (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22:175–182. https://doi.org/10.1038/nm.4017

    Article  CAS  PubMed  Google Scholar 

  11. Guo X, Yin H, Li L, Chen Y, Li J, Doan J, Steinmetz R, Liu Q (2017) Cardioprotective role of tumor necrosis factor receptor-associated factor 2 by suppressing apoptosis and necroptosis. Circulation 136:729–742. https://doi.org/10.1161/CIRCULATIONAHA.116.026240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ji F, Li Z, Nguyen H, Young N, Shi P, Fleming N, Liu H (2013) Perioperative dexmedetomidine improves outcomes of cardiac surgery. Circulation 127:1576–1584. https://doi.org/10.1161/CIRCULATIONAHA.112.000936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang F, Ding T, Yu L, Zhong Y, Dai H, Yan M (2012) Dexmedetomidine protects against oxygen-glucose deprivation-induced injury through the I2 imidazoline receptor-PI3K/AKT pathway in rat C6 glioma cells. J Pharm Pharmacol 64:120–127. https://doi.org/10.1111/j.2042-7158.2011.01382.x

    Article  CAS  PubMed  Google Scholar 

  14. Cai Y, Xu H, Yan J, Zhang L, Lu Y (2014) Molecular targets and mechanism of action of dexmedetomidine in treatment of ischemia/reperfusion injury. Mol Med Rep 9:1542–1550. https://doi.org/10.3892/mmr.2014.2034

    Article  CAS  PubMed  Google Scholar 

  15. Okada H, Kurita T, Mochizuki T, Morita K, Sato S (2007) The cardioprotective effect of dexmedetomidine on global ischaemia in isolated rat hearts. Resuscitation 74:538–545. https://doi.org/10.1016/j.resuscitation.2007.01.032

    Article  CAS  PubMed  Google Scholar 

  16. Ibacache M, Sanchez G, Pedrozo Z, Galvez F, Humeres C, Echevarria G, Duaso J, Hassi M, Garcia L, Diaz-Araya G, Lavandero S (2012) Dexmedetomidine preconditioning activates pro-survival kinases and attenuates regional ischemia/reperfusion injury in rat heart. Biochim Biophys Acta 1822:537–545. https://doi.org/10.1016/j.bbadis.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  17. Xu T, Ding W, Ao X, Chu X, Wan Q, Wang Y, Xiao D, Yu W, Li M, Yu F, Wang J (2018) ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biol 20:414–426. https://doi.org/10.1016/j.redox.2018.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nan J, Nan C, Ye J, Qian L, Geng Y, Xing D, Rahman MSU, Huang M (2018) EGCG protects cardiomyocytes against hypoxia-reperfusion injury via inhibiting OMA1 activation. J Cell Sci. https://doi.org/10.1242/jcs.220871

    Article  Google Scholar 

  19. Zhang Y, Liu X, Zhang L, Li X, Zhou Z, Jiao L, Shao Y, Li M, Leng B, Zhou Y, Liu T, Liu Q, Shan H, Du Z (2018) Metformin protects against H2O2-induced cardiomyocyte injury by inhibiting the miR-1a-3p/GRP94 pathway. Mol Ther Nucleic Acids 13:189–197. https://doi.org/10.1016/j.omtn.2018.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu XR, Li T, Cao L, Yu YY, Chen LL, Fan XH, Yang BB, Tan XQ (2018) Dexmedetomidine attenuates H2O2-induced neonatal rat cardiomyocytes apoptosis through mitochondria- and ER-medicated oxidative stress pathways. Mol Med Rep 17:7258–7264. https://doi.org/10.3892/mmr.2018.8751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weng X, Zhang X, Lu X, Wu J, Li S (2018) Reduced mitochondrial response sensitivity is involved in the antiapoptotic effect of dexmedetomidine pretreatment in cardiomyocytes. Int J Mol Med. https://doi.org/10.3892/ijmm.2018.3384

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang Q, Yu H, Yu H, Ma M, Ma Y, Li R (2019) miR2233p/TIAL1 interaction is involved in the mechanisms associated with the neuroprotective effects of dexmedetomidine on hippocampal neuronal cells in vitro. Mol Med Rep 19:805–812. https://doi.org/10.3892/mmr.2018.9742

    Article  CAS  PubMed  Google Scholar 

  23. Kniss A, Lu H, Jones DP, Kemp ML (2013) A microfluidic systems biology approach for live single-cell mitochondrial ROS imaging. Methods Enzymol 526:219–230. https://doi.org/10.1016/B978-0-12-405883-5.00013-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21:1465–1468. https://doi.org/10.1002/hep.1840210534

    Article  CAS  PubMed  Google Scholar 

  25. Yoshikawa Y, Hirata N, Kawaguchi R, Tokinaga Y, Yamakage M (2017) Dexmedetomidine maintains its direct cardioprotective effect against ischemia/reperfusion injury in hypertensive hypertrophied myocardium. Anesth Analg. https://doi.org/10.1213/ane.0000000000002452

    Article  Google Scholar 

  26. Peng K, Qiu Y, Li J, Zhang ZC, Ji FH (2017) Dexmedetomidine attenuates hypoxia/reoxygenation injury in primary neonatal rat cardiomyocytes. Exp Ther Med 14:689–695. https://doi.org/10.3892/etm.2017.4537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70:181–190. https://doi.org/10.1016/j.cardiores.2006.02.025

    Article  CAS  PubMed  Google Scholar 

  28. Sies H (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619. https://doi.org/10.1016/j.redox.2016.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zandalinas SI, Mittler R (2018) ROS-induced ROS release in plant and animal cells. Free Radic Biol Med 122:21–27. https://doi.org/10.1016/j.freeradbiomed.2017.11.028

    Article  CAS  PubMed  Google Scholar 

  30. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2016) Ischemia/reperfusion. Compr Physiol 7:113–170. https://doi.org/10.1002/cphy.c160006

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang M, Sun G-B, Du Y-Y, Tian Y, Liao P, Liu X-S, Ye J-X, Sun X-B (2017) Myricitrin protects cardiomyocytes from hypoxia/reoxygenation injury: involvement of heat shock protein 90. Front Pharmacol. https://doi.org/10.3389/fphar.2017.00353

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ichim G, Tait SW (2016) A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer 16:539–548. https://doi.org/10.1038/nrc.2016.58

    Article  CAS  PubMed  Google Scholar 

  33. Zhai M, Li B, Duan W, Jing L, Zhang B, Zhang M, Yu L, Liu Z, Yu B, Ren K, Gao E, Yang Y, Liang H, Jin Z, Yu S (2017) Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res. https://doi.org/10.1111/jpi.12419

    Article  PubMed  Google Scholar 

  34. Wang YK, Huang ZQ (2005) Protective effects of icariin on human umbilical vein endothelial cell injury induced by H2O2 in vitro. Pharmacol Res 52:174–182. https://doi.org/10.1016/j.phrs.2005.02.023

    Article  CAS  PubMed  Google Scholar 

  35. Konstantinidis K, Whelan RS, Kitsis RN (2012) Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 32:1552–1562. https://doi.org/10.1161/ATVBAHA.111.224915

    Article  CAS  PubMed  Google Scholar 

  36. Amgalan D, Chen Y, Kitsis RN (2017) Death receptor signaling in the heart: cell survival, apoptosis, and necroptosis. Circulation 136:743–746. https://doi.org/10.1161/CIRCULATIONAHA.117.029566

    Article  PubMed  PubMed Central  Google Scholar 

  37. D'Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  38. Yang T, Cao C, Yang J, Liu T, Lei XG, Zhang Z, Xu S (2018) miR-200a-5p regulates myocardial necroptosis induced by Se deficiency via targeting RNF11. Redox Biol 15:159–169. https://doi.org/10.1016/j.redox.2017.11.025

    Article  CAS  PubMed  Google Scholar 

  39. Lu B, Wang Z, Ding Y, Wang X, Lu S, Wang C, He C, Piao M, Chi G, Luo Y, Ge P (2018) RIP1 and RIP3 contribute to shikonin-induced glycolysis suppression in glioma cells via increase of intracellular hydrogen peroxide. Cancer Lett 425:31–42. https://doi.org/10.1016/j.canlet.2018.03.046

    Article  CAS  PubMed  Google Scholar 

  40. Feoktistova M, Leverkus M (2015) Programmed necrosis and necroptosis signalling. FEBS J 282:19–31. https://doi.org/10.1111/febs.13120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge for Mr. Peng Xing (Shenzhen Ivy-Valued Biotechnology Co. Ltd) for technical assistance during the experiments, and acknowledge Shenzhen Ivy-Valued Biotechnology Co. Ltd. for English language editing service.

Funding

This study was supported by the funding from the National Natural Science Foundation of China (81801947) and the funding of JCYJ20180305180809671 of Shenzhen Science and Technology Innovation Committee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Congcai Ren or Jinqiao Qian.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, W., Wang, C., Peng, Y. et al. Dexmedetomidine alleviates H2O2-induced oxidative stress and cell necroptosis through activating of α2-adrenoceptor in H9C2 cells. Mol Biol Rep 47, 3629–3639 (2020). https://doi.org/10.1007/s11033-020-05456-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05456-w

Keywords

Navigation