Skip to main content
Log in

Cisplatin and farnesol co-encapsulated PLGA nano-particles demonstrate enhanced anti-cancer potential against hepatocellular carcinoma cells in vitro

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cisplatin (CDDP) is a potent chemotherapeutic drug, but its severe side-effects often prohibit its use. Combined treatment with CDDP plus Farnesol (FAR) and their co-encapsulated nano form were investigated in in vitro to examine if synergistic cytotoxicity of this combination could reduce unwanted side-effects of CDDP chemotherapy and potentiate CDDP anticancer activity against hepatocellular carcinoma (HCC) cells. After finding combination therapy of CDDP and FAR successfully combat HCC we formulated co-encapsulation of CDDP and FAR within poly(lactic-co-glycolic acid) copolymer (NCDDPFAR) by following the standardized solvent displacement method. NCDDPFAR treatment caused faster drug mobility, sustained particle release, site-specific action and higher percentage of apoptotic death compared with single drug treatment even at relatively low concentrations. Co-encapsulation of two drugs exhibited additive effects against HCC; FAR reduced CDDP-induced glutathione level by increasing expression of CYP2E1 while CDDP directly interacted with DNA; FAR up-regulated the expression of TopII, thereby promoting DNA breaks and escaping DNA repair machinery. Expression pattern of apoptotic genes like p53, Bax, cytochrome c and caspase-3 suggested that NCDDPFAR induced HCC cell death through mitochondrial intrinsic pathway. Administration of NCDDPFAR had better ability of drug carriage and enhanced anticancer potentials against HCC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:359–386. https://doi.org/10.1002/ijc.29210

    Article  CAS  Google Scholar 

  2. American Cancer Society (2018) Cancer facts & figures 2018. American Cancer Society, Atlanta

    Google Scholar 

  3. Ishikawa T (2009) Future perspectives on the treatment of hepatocellular carcinoma with cisplatin. World J Hepatol 31:8–16. https://doi.org/10.4254/wjh.v1.i1.8

    Article  Google Scholar 

  4. Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM (2018) DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics 73:e478s. https://doi.org/10.6061/clinics/2018/e478s

    Article  PubMed  PubMed Central  Google Scholar 

  5. Weeks JC, Catalano PJ, Cronin A, Finkelman MD, Mack JW, Keating NL, Schrag D (2012) Patients' expectations about effects of chemotherapy for advanced cancer. N Engl J Med 367:1616–1625. https://doi.org/10.1056/NEJMoa1204410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deng G, Zeng S, Shen H (2015) Chemotherapy and target therapy for hepatocellular carcinoma: new advances and challenges. World J Hepatol 7:787–798. https://doi.org/10.4254/wjh.v7.i5.787

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim ES, Mauer AM, William WN, Tran HT, Liu D, Lee JJ, Windt P, Hong WK, Vokes EE, Herbst RS (2009) A phase 2 study of cetuximab in combination with docetaxel in chemotherapy-refractory/resistant patients with advanced nonsmall cell lung cancer. Cancer 115:1713–1722. https://doi.org/10.1002/cncr.24148

    Article  CAS  PubMed  Google Scholar 

  8. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, Manegold C (2010) Overall survival with cisplatin–gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol 21:1804–1809. https://doi.org/10.1093/annonc/mdq020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Siddiquia M, Rajkumarb SV (2012) The high cost of cancer drugs and what we can do about it. Mayo Clin Proc 87:935–943. https://doi.org/10.1016/j.mayocp.2012.07.007

    Article  Google Scholar 

  10. Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K, Shah P, Moon YS, Yaqubie A, Kelly N, Le DT, Lipson EJ, Chapman PB Jr, Diaz LA, Vogelstein B, Nowak MA (2013) Evolutionary dynamics of cancer in response to targeted combination therapy. Elife 25:e00747. https://doi.org/10.7554/eLife.00747

    Article  Google Scholar 

  11. Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H (2017) Combination therapy in combating cancer. Oncotarget 8:38022–38043

    Article  PubMed Central  Google Scholar 

  12. Joo JH, Jetten AM (2010) Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett 287:123–135. https://doi.org/10.1016/j.canlet.2009.05.015

    Article  CAS  PubMed  Google Scholar 

  13. Elson CE (1672S) Suppression of mevalonate pathway activities by dietary isoprenoids: protective roles in cancer and cardiovascular disease. J Nutr 125:1666S–1672S. https://doi.org/10.1093/jn/125.suppl_6.1666S

    Article  CAS  PubMed  Google Scholar 

  14. Mo H, Elson CE (2004) Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp Biol Med 229:567–585. https://doi.org/10.1177/153537020422900701

    Article  CAS  Google Scholar 

  15. Duncan RE, Archer MC (2008) Farnesol decreases serum triglycerides in rats: identification of mechanisms including up-regulation of PPARalpha and down-regulation of fatty acid synthase in hepatocytes. Lipids 43:619–627. https://doi.org/10.1007/s11745-008-3192-3

    Article  CAS  PubMed  Google Scholar 

  16. Goto T, Kim Y, Funakoshi K, Teraminami A, Uemura T, Hirai S, Lee JY, Makishima M, Nakata R, Inoue H, Senju H, Matsunaga M, Horio F, Takahashi N, Kawada T (2011) Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPAR-dependent and -independent pathways. Am J Physiol Endocrinol Metab 301:1022–1032. https://doi.org/10.1152/ajpendo.00061.2011

    Article  CAS  Google Scholar 

  17. Lee JH, Kim C, Kim SH, Sethi G, Ahn KH (2015) Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett 360:280–293. https://doi.org/10.1016/j.canlet.2015.02.024

    Article  CAS  PubMed  Google Scholar 

  18. Wang RW, Kari PH, Lu AY, Thomas PE, Guengerich FP, Vyas KP (1991) Biotransformation of lovastatin. IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch Biochem Biophys 290:355–361. https://doi.org/10.1016/0003-9861(91)90551-S

    Article  CAS  PubMed  Google Scholar 

  19. Estabrook RW (2003) A passion for P450s rememberances of the early history of research on cytochrome P450. Drug Metab Dispos 31:1461–1473. https://doi.org/10.1124/dmd.31.12.1461

    Article  CAS  PubMed  Google Scholar 

  20. Marí M, Wu D, Nieto N, Cederbaum AI (2001) CYP2E1-dependent toxicity and up-regulation of antioxidant genes. J Biomed Sci 8(1):52–58. https://doi.org/10.1007/bf02255971

    Article  PubMed  Google Scholar 

  21. Vasir JK, Labhasetwar V (2007) Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 5:718–728. https://doi.org/10.1016/j.addr.2007.06.003

    Article  CAS  Google Scholar 

  22. Makadia HK, Steven J (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397. https://doi.org/10.3390/polym3031377

    Article  CAS  PubMed  Google Scholar 

  23. Marin E, Briceno MI, Caballero-George C (2013) Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine 8:3071–3091. https://doi.org/10.2147/IJN.S47186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  25. Fessi H, Puisieux F, Devissaquet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:1–4. https://doi.org/10.1016/0378-5173(89)90281-0

    Article  Google Scholar 

  26. Shi Q, Maas L, Veith C, Schooten FJV, Godschalk RW (2017) Acidic cellular microenvironment modifies carcinogen-induced DNA damage and repair. Arch Toxicol 91:2425–2441. https://doi.org/10.1007/s00204-016-1907-4

    Article  CAS  PubMed  Google Scholar 

  27. Modi S, Anderson BD (2013) Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharm 10:3076–3089. https://doi.org/10.1021/mp400154a

    Article  CAS  PubMed  Google Scholar 

  28. Matassov D, Kagan T, Leblanc J, Sikorska M, Zakeri Z (2004) Measurement of apoptosis by DNA fragmentation. Methods Mol Biol 282:1–17. https://doi.org/10.1385/1-59259-812-9:001

    Article  CAS  PubMed  Google Scholar 

  29. Shoemaker RH, Wolpert-DeFilippes MK, Kern DH, Lieber MM, Makuch RW, Melnick NR, Miller WT, Salmon SE, Simon RM, Venditti JM (1985) Application of a human tumor colony-forming assay to new drug screening. Cancer Res 45:2145–2153

    CAS  PubMed  Google Scholar 

  30. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226. https://doi.org/10.1016/0003-2697(76)90326-2

    Article  CAS  PubMed  Google Scholar 

  31. Chowdhury R, Dutta A, Chaudhuri SR, Sharma N, Giri AK, Chaudhuri K (2008) In vitro and in vivo reduction of sodium arsenite induced toxicity by aqueous garlic extract. Food Chem Toxicol 46:740–751. https://doi.org/10.1016/j.fct.2007.09.108

    Article  CAS  PubMed  Google Scholar 

  32. Burnette WN (1981) ‘‘Western blotting’’: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radio iodinated protein. Anal Biochem 112:195–203. https://doi.org/10.1016/0003-2697(81)90281-5

    Article  CAS  PubMed  Google Scholar 

  33. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57. https://doi.org/10.3390/pharmaceutics10020057

    Article  CAS  PubMed Central  Google Scholar 

  34. Ostolska I, Wiśniewska M (2014) Application of the zeta potential measurements to explanation of colloidal Cr2O3 stability mechanism in the presence of the ionic polyamino acids. Colloid Polym Sci 292:2453–2464. https://doi.org/10.1007/s00396-014-3276-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Youm I, Murowchick JB, Youan BB (2012) Entrapment and release kinetics of furosemide from pegylated nanocarriers. Colloids Surf B 94:133–142. https://doi.org/10.1016/j.colsurfb.2012.01.027

    Article  CAS  Google Scholar 

  36. Kashyap S, Singh A, Mishra A, Singh V (2019) Enhanced sustained release of furosemide in long circulating chitosan-conjugated PLGA nanoparticles. Res Pharm Sci 14:93–106. https://doi.org/10.4103/1735-5362.253356

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB (2013) Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Interdiscip Rev Nanomed Nanobiotechnol 5:205–218. https://doi.org/10.1002/wnan.1211

    Article  CAS  Google Scholar 

  38. van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP (1996) A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 24:131–139. https://doi.org/10.1002/(SICI)1097-0320(19960601)24:2%3c131:AID-CYTO5%3e3.0.CO;2-M

    Article  PubMed  Google Scholar 

  39. Li TK, Liu LF (2001) Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 41:53–77. https://doi.org/10.1146/annurev.pharmtox.41.1.53

    Article  PubMed  Google Scholar 

  40. Willmore E, de Caux S, Sunter NJ, Tilby MJ, Jackson GH, Austin CA, Durkacz BW (2004) A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood 103:4659–4665. https://doi.org/10.1182/blood-2003-07-2527

    Article  CAS  PubMed  Google Scholar 

  41. Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF (1991) The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol 10:1–14. https://doi.org/10.1089/dna.1991.10.1

    Article  CAS  PubMed  Google Scholar 

  42. Ha HL, Shin HJ, Feitelson MA, Yu DY (2010) Oxidative stress and antioxidants in hepatic pathogenesis. World J Gastroenterol 16:6035–6043. https://doi.org/10.3748/wjg.v16.i48.6035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rocha CR, Garcia CC, Vieira DB, Quinet A, de Andrade-Lima LC, Munford V, Belizário JE, Menck CF (2014) Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo. Cell Death Dis 5:e1505. https://doi.org/10.1038/cddis.2014.465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hospers GAP, Mulder NH, de Jong B, de Ley L, Uges DRA, Fichtinger-Schepman AMJ, Scheper RJ, de Vries EGE (1988) Characterization of a human small cell lung carcinoma cell line with acquired resistance to cis-diamminedichloroplatinum(II) in vitro. Cancer Res 48:6803–6807

    CAS  PubMed  Google Scholar 

  45. Wang J, Yi J (2008) Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 7:1875–1884. https://doi.org/10.4161/cbt.7.12.7067

    Article  CAS  PubMed  Google Scholar 

  46. Lee EB, Cheon MG, Cui J, Lee YJ, Seo EK, Jang HH (2017) The quinone-based derivative, HMNQ induces apoptotic and autophagic cell death by modulating reactive oxygen species in cancer cells. Oncotarget 8:99637–99648

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hassan M, Watari H, Almaaty Abu A, Ohba Y, Sakuragi N (2014) Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014:150845. https://doi.org/10.1155/2014/150845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very much indebted to Prof. Ashish Kumar Panigrahi, Head, Department of Zoology, University of Kalyani (KU), for his encouragements and help. Thanks also go to Dr. Mousumi Patra, Department of Biochemistry and Biophysics, KU for DLS spectroscopy. We extend our sincere thanks to IACS, India for CD spectroscopy.

Funding

This work was supported by University of Grants Commission, New Delhi, India [Grant No. F1-17.1/2012-13/MANF-2012-13-MUS-WES-13662, 2013].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anisur Rahman Khuda-Bukhsh.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 744 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, J., Khuda-Bukhsh, A.R. Cisplatin and farnesol co-encapsulated PLGA nano-particles demonstrate enhanced anti-cancer potential against hepatocellular carcinoma cells in vitro. Mol Biol Rep 47, 3615–3628 (2020). https://doi.org/10.1007/s11033-020-05455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05455-x

Keywords

Navigation