Skip to main content
Log in

The differential effects of commercial specialized media on cell growth and transforming growth factor beta 1-induced epithelial-mesenchymal transition in bronchial epithelial cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Epithelial-mesenchymal transition (EMT) is one of the mechanisms that contribute to bronchial remodelling which underlie chronic inflammatory airway diseases such as chronic obstructive pulmonary disorder (COPD) and asthma. Bronchial EMT can be triggered by many factors including transforming growth factor β1 (TGFβ1). The majority of studies on TGFβ1-mediated bronchial EMT used BEGM as the culture medium. LHC-9 medium is another alternative available which is more economical but a less common option. Using normal human bronchial epithelial cells (BEAS-2B) cultured in BEGM as a reference, this study aims to validate the induction of EMT by TGFβ1 in cells cultured in LHC-9. Briefly, the cells were maintained in either LHC-9 or BEGM, and induced with TGFβ1 (5, 10 and 20 ng/ml) for 48 h. EMT induction was confirmed by morphological analysis and EMT markers expression by immunoblotting. In both media, cells induced with TGFβ1 displayed spindle-like morphology with a significantly higher radius ratio compared to non-induced cells which displayed a cobblestone morphology. Correspondingly, the expression of the epithelial marker E-cadherin was significantly lower, whereas the mesenchymal marker vimentin expression was significantly higher in induced cells, compared to non-induced cells. By contrast, a slower cell growth rate was observed in LHC-9 compared to that of BEGM. This study demonstrates that neither LHC-9 nor BEGM significantly influence TGFβ1-induced bronchial EMT. However, LHC-9 is less optimal for bronchial epithelial cell growth compared to BEGM. Thus, LHC-9 may be a more cost-effective substitute for BEGM, provided that time is not a factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bergeron C, Tulic MK, Hamid Q (2010) Airway remodelling in asthma: from benchside to clinical practice. Can Respir J 17(4):e85–e93. https://doi.org/10.1155/2010/318029

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sohal SS, Reid D, Soltani A, Ward C, Weston S, Muller HK, Walters EH (2011) Evaluation of epithelial mesenchymal transition in patients with chronic obstructive pulmonary disease. Respir Res 12(1):130. https://doi.org/10.1186/1465-9921-12-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnson JR, Roos A, Berg T, Nord M, Fuxe J (2011) Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways. PLoS ONE 6(1):e16175. https://doi.org/10.1371/journal.pone.0016175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Milara J, Peiró T, Serrano A, Cortijo J (2013) Epithelial to mesenchymal transition is increased in patients with COPD and induced by cigarette smoke. Thorax 68(5):410–420. https://doi.org/10.1136/thoraxjnl-2012-201761

    Article  PubMed  Google Scholar 

  5. Davies M, Robinson M, Smith E, Huntley S, Prime S, Paterson I (2005) Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-β1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem 95(5):918–931. https://doi.org/10.1002/jcb.20458

    Article  CAS  PubMed  Google Scholar 

  6. Chen T, Nie H, Gao X, Yang J, Pu J, Chen Z, Jia G (2014) Epithelial–mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway. Toxicol Lett 226(2):150–162. https://doi.org/10.1016/j.toxlet.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  7. Qiao P, Li G, Bi W, Yang L, Yao L, Wu D (2015) microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway. BMC Cancer 15(1):469. https://doi.org/10.1186/s12885-015-1359-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Câmara J, Jarai G (2010) Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-α. Fibrogenesis Tissue Repair 3(1):2. https://doi.org/10.1186/1755-1536-3-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johnson JR, Nishioka M, Chakir J, Risse PA, Almaghlouth I, Bazarbashi AN, Hamid Q (2013) IL-22 contributes to TGF-β1-mediated epithelial-mesenchymal transition in asthmatic bronchial epithelial cells. Respir Res 14(1):118. https://doi.org/10.1186/1465-9921-14-118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Itoigawa Y, Harada N, Harada S, Katsura Y, Makino F, Ito J, Takahashi K (2015) TWEAK enhances TGF-β-induced epithelial-mesenchymal transition in human bronchial epithelial cells. Respir Res 16(1):48. https://doi.org/10.1186/s12931-015-0207-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hogg JC (2004) Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364(9435):709–721. https://doi.org/10.1016/S0140-6736(04)16900-6

    Article  PubMed  Google Scholar 

  12. Mahmood MAQ, Reid DA, Ward CH, Muller HANSK, Knight DAA, Sohal SUS, Walters EUH (2017) Transforming growth factor (TGF) β1 and Smad signalling pathways: a likely key to EMT-associated COPD pathogenesis. Respirology. https://doi.org/10.1111/resp.12882

    Article  PubMed  Google Scholar 

  13. Di Stefano A, Sangiorgi C, Gnemmi I, Casolari P, Brun P, Ricciardolo FL, Girbino G (2018) TGF-β signaling pathways in different compartments of the lower airways of patients with stable COPD. Chest 153(4):851–862. https://doi.org/10.1016/j.chest.2017.12.017

    Article  PubMed  Google Scholar 

  14. Chen YC, Statt S, Wu R, Chang H, Liao JW, Wang CN, Lee CC (2016) High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep 6:18815. https://doi.org/10.1038/srep18815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heijink IH, Postma DS, Noordhoek JA, Broekema M, Kapus A (2010) House dust mite–promoted epithelial-to-mesenchymal transition in human bronchial epithelium. Am J Respir Cell Mol Biol 42(1):69–79. https://doi.org/10.1165/rcmb.2008-0449OC

    Article  CAS  PubMed  Google Scholar 

  16. Veljkovic E, Jiricny J, Menigatti M, Rehrauer H, Han W (2011) Chronic exposure to cigarette smoke condensate in vitro induces epithelial to mesenchymal transition-like changes in human bronchial epithelial cells, BEAS-2B. Toxicol In Vitro 25(2):446–453. https://doi.org/10.1016/j.tiv.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  17. Doerner AM, Zuraw BL (2009) TGF-β 1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids. Respir Res 10(1):100. https://doi.org/10.1186/1465-9921-10-100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang H, Wang HS, Zhou BH, Li CL, Zhang F, Wang XF, Du J (2013) Epithelial–mesenchymal transition (EMT) induced by TNF-α requires AKT/GSK-3β-mediated stabilization of snail in colorectal cancer. PLoS ONE 8(2):e56664. https://doi.org/10.1371/journal.pone.0056664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang Z, Yi M, Ran N, Jin L, Fu P, Feng X, Xu L, Qu Z (2016) Astragalus extract inhibits TGF-β1-induced EMT of bronchial epithelial cells and airway remodeling in asthmatic mice. Int J Clin Exp Med 9(2):1281–1289

    CAS  Google Scholar 

  20. Altraja S, Jaama J, Altraja A (2010) Proteome changes of human bronchial epithelial cells in response to pro-inflammatory mediator leukotriene E4 and pro-remodelling factor TGF-β1. J Proteom 73(6):1230–1240. https://doi.org/10.1016/j.jprot.2010.02.017

    Article  CAS  Google Scholar 

  21. Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Luo Z (2015) AMPK inhibits the stimulatory effects of TGF-β on Smad2/3 activity, cell migration, and epithelial-to-mesenchymal transition. Mol Pharmacol 88(6):1062–1071. https://doi.org/10.1124/mol.115.099549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim JH, Ham S, Lee Y, Suh GY, Lee YS (2019) TTC3 contributes to TGF-β1-induced epithelial-mesenchymal transition and myofibroblast differentiation, potentially through SMURF2 ubiquitylation and degradation. Cell Death Dis. https://doi.org/10.1038/s41419-019-1308-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pawliczak R, Cowan MJ, Huang X, Nanavaty UB, Alsaaty S, Logun C, Shelhamer JH (2001) p11 expression in human bronchial epithelial cells is increased by nitric oxide in a cGMP-dependent pathway involving protein kinase G activation. J Biol Chem 276(48):44613–44621. https://doi.org/10.1074/jbc.M104993200

    Article  CAS  PubMed  Google Scholar 

  24. Zhao YL, Piao CQ, Wu LJ, Suzuki M, Hei TK (2000) Differentially expressed genes in asbestos-induced tumorigenic human bronchial epithelial cells: implication for mechanism. Carcinogenesis 21(11):2005–2010. https://doi.org/10.1093/carcin/21.11.2005

    Article  CAS  PubMed  Google Scholar 

  25. Reddel RR, Ke Y, Gerwin BI, McMenamin MG, Lechner JF, Su RT, Harris CC (1988) Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Can Res 48(7):1904–1909

    CAS  Google Scholar 

  26. Zhao F, Klimecki WT (2015) Culture conditions profoundly impact phenotype in BEAS-2B, a human pulmonary epithelial model. J Appl Toxicol 35(8):945–951. https://doi.org/10.1002/jat.3094

    Article  CAS  PubMed  Google Scholar 

  27. Ren ZX, Yu HB, Li JS, Shen JL, Du WS (2015) Suitable parameter choice on quantitative morphology of A549 cell in epithelial–mesenchymal transition. Biosci Rep 35(3):e00202. https://doi.org/10.1042/BSR20150070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kamitani S, Yamauchi Y, Kawasaki S, Takami K, Takizawa H, Nagase T, Kohyama T (2011) Simultaneous stimulation with TGF-β1 and TNF-α induces epithelial mesenchymal transition in bronchial epithelial cells. Int Arch Allergy Immunol 155(2):119–128. https://doi.org/10.1159/000318854

    Article  CAS  PubMed  Google Scholar 

  29. Hackett TL, Warner SM, Stefanowicz D, Shaheen F, Pechkovsky DV, Murray LA, Knight DA (2009) Induction of epithelial–mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-β1. Am J Respir Crit Care Med 180(2):122–133. https://doi.org/10.1164/rccm.200811-1730OC

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Li H, Duan Y, Cai X, You D, Zhou F, Liu Z (2019) Blockage of TGF-α induced by spherical silica nanoparticles inhibits epithelial-mesenchymal transition and proliferation of human lung epithelial cells. Biomed Res Int. https://doi.org/10.1155/2019/8231267

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee YZ, Yap HM, Shaari K, Tham CL, Sulaiman MR, Israf DA (2017) Blockade of eosinophil-induced bronchial epithelial-mesenchymal transition with a geranyl acetophenone in a coculture model. Front Pharmacol 8:837. https://doi.org/10.3389/fphar.2017.00837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu CH, Tang SC, Wang PH, Lee H, Ko JL (2012) Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem 287(30):25292–25302. https://doi.org/10.1074/jbc.M111.291195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hackett TL (2012) Epithelial–mesenchymal transition in the pathophysiology of airway remodelling in asthma. Curr Opin Allergy Clin Immunol 12(1):53–59. https://doi.org/10.1097/ACI.0b013e32834ec6eb

    Article  CAS  PubMed  Google Scholar 

  34. Pain M, Bermudez O, Lacoste P, Royer PJ, Botturi K, Tissot A, Magnan A (2014) Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype. Eur Respir Rev 23(131):118–130. https://doi.org/10.1183/09059180.00004413

    Article  PubMed  Google Scholar 

  35. Hedström U, Hallgren O, Öberg L, DeMicco A, Vaarala O, Westergren-Thorsson G, Zhou X (2018) Bronchial extracellular matrix from COPD patients induces altered gene expression in repopulated primary human bronchial epithelial cells. Sci Rep 8(1):3502. https://doi.org/10.1038/s41598-018-21727-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borthwick LA, Parker SM, Brougham KA, Johnson GE, Gorowiec MR, Ward C, Fisher AJ (2009) Epithelial to mesenchymal transition (EMT) and airway remodelling after human lung transplantation. Thorax 64(9):770–777. https://doi.org/10.1136/thx.2008.104133

    Article  CAS  PubMed  Google Scholar 

  37. Kolosova I, Nethery D, Kern JA (2011) Role of Smad2/3 and p38 MAP kinase in TGF-β1-induced epithelial–mesenchymal transition of pulmonary epithelial cells. J Cell Physiol 226(5):1248–1254. https://doi.org/10.1002/jcp.22448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel AS, Song JW, Chu SG, Mizumura K, Osorio JC, Shi Y, Choi AM (2015) Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis. PLoS ONE 10(3):e0121246. https://doi.org/10.1371/journal.pone.0121246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van der Toorn M, Sewer A, Marescotti D, Johne S, Baumer K, Bornand D, Pak C (2018) The biological effects of long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product. Toxicol In Vitro 50:95–108. https://doi.org/10.1016/j.tiv.2018.02.019

    Article  CAS  PubMed  Google Scholar 

  40. Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS (2007) Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 4(1):2. https://doi.org/10.1186/1743-8977-4-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Minor DM, Proud D (2017) Role of human rhinovirus in triggering human airway epithelial-mesenchymal transition. Respir Res 18(1):110. https://doi.org/10.1186/s12931-017-0595-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reyes-Reyes EM, Aispuro I, Tavera-Garcia MA, Field M, Moore S, Ramos I, Ramos KS (2017) LINE-1 couples EMT programming with acquisition of oncogenic phenotypes in human bronchial epithelial cells. Oncotarget 8(61):103828. https://doi.org/10.18632/oncotarget.21953

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li CY, Wang YH, Lin ZY, Yang LW, Gao SL, Liu T, Liu G (2017) MiR-5100 targets TOB2 to drive epithelial-mesenchymal transition associated with activating smad2/3 in lung epithelial cells. Am J Transl Res 9(10):4694

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Malm SW, Amouzougan EA, Klimecki WT (2018) Fetal bovine serum induces sustained, but reversible, epithelial-mesenchymal transition in the BEAS-2B cell line. Toxicol In Vitro 50:383–390. https://doi.org/10.1016/j.tiv.2018.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu JY, Chen YC, Lin CH, Kao SH (2013) Perilla frutescens leaf extract inhibits mite major allergen Der p 2-induced gene expression of pro-allergic and pro-inflammatory cytokines in human bronchial epithelial cell BEAS-2B. PLoS ONE 8(10):e77458. https://doi.org/10.1371/journal.pone.0077458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Zulkhairi Zainol for his excellent technical assistance. This work was supported by Putra Grant-Putra Young Initiative, Universiti Putra Malaysia [IPM-9522500].

Funding

This study was funded by Putra Grant-Putra Young Initiative, Universiti Putra Malaysia [IPM-9522500].

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript. NAH and HHH conceived the experiments. NAH conducted the experiments. NAH and HHH wrote or contributed to the writing of the manuscript. All authors contributed ideas and technical advices.

Corresponding author

Correspondence to Hanis Hazeera Harith.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, N.A.H.M., Harith, H.H., Israf, D.A. et al. The differential effects of commercial specialized media on cell growth and transforming growth factor beta 1-induced epithelial-mesenchymal transition in bronchial epithelial cells. Mol Biol Rep 47, 3511–3519 (2020). https://doi.org/10.1007/s11033-020-05439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05439-x

Keywords

Navigation