Skip to main content
Log in

Overexpression of GmSUMO2 gene confers increased abscisic acid sensitivity in transgenic soybean hairy roots

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Small ubiquitin-like modifier (SUMO) participates in post-translational modification of various target proteins. SUMOylation is an important molecular regulatory mechanism for plants to respond to abiotic stress. In the present study, GmSUMO2 gene was isolated from soybean seedlings for further study because of the highest expression level among these six SUMO genes in soybean. qRT-PCR results showed that GmSUMO2 gene were detected in root, leaf, cotyledon, seed root, flower, pod and seed, with the highest transcription level in cotyledon. Moreover, GmSUMO2 gene was transcriptionally regulated by 200 mM NaCl, 42 °C, 25 μM abscisic acid (ABA) and 20% PEG6000 during the 24 h period of treatment. Besides, western blot analysis using AtSUMO1 antibody indicated that the free SUMO levels and SUMOylation dynamics were regulated by ABA stimulus. Functional analysis indicated that overexpression of GmSUMO2 gene in soybean hairy roots accentuated the sensitivity to exogenous ABA. Furthermore, the expression levels of ABI3, ABI5, SnRK1.1 and SnRK1.2 were differentially regulated by GmSUMO2 in transgenic soybean hairy roots. Overall, these results provided a preliminary understanding of molecular characterization, expression and function of GmSUMO2 in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park HJ, Kim WY, Park HC, Lee SY, Bohnert HJ, Yun DJ (2011) SUMO and SUMOylation in plants. Mol Cells 32(4):305–316

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11(12):861–871

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Elrouby N (2015) Analysis of small ubiquitin-like modifier (SUMO) targets reflects the essential nature of protein SUMOylation and provides insight to elucidate the role of SUMO in plant development. Plant Physiol 169(2):1006–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278(9):6862–6872

    CAS  PubMed  Google Scholar 

  5. Denison C, Rudner AD, Gerber SA, Bakalarski CE, Gygi SPJM, Proteomics C (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteomics 4(3):246–254

    CAS  PubMed  Google Scholar 

  6. Castano-Miquel L, Segui J, Manrique S, Teixeira I, Carretero-Paulet L, Atencio F, Lois LM (2013) Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation. Mol Plant 6(5):1646–1660

    CAS  PubMed  Google Scholar 

  7. Saracco SA, Miller MJ, Kurepa J, Vierstra RD (2007) Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol 145(1):119–134

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Novatchkova M, Tomanov K, Hofmann K, Stuible HP, Bachmair A (2012) Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison. New Phytol 195(1):23–31

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nigam N, Singh A, Sahi C, Chandramouli A, Grover A (2008) SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response. Mol Genet Genomics 279(4):371–383

    CAS  PubMed  Google Scholar 

  10. Chaikam V, Karlson DT (2010) Response and transcriptional regulation of rice SUMOylation system during development and stress conditions. BMB Rep 43(2):103–109

    CAS  PubMed  Google Scholar 

  11. Wang H, Wang M, Xia Z (2019) Overexpression of a maize SUMO conjugating enzyme gene (ZmSCE1e) increases Sumoylation levels and enhances salt and drought tolerance in transgenic tobacco. Plant Sci 281:113–121

    CAS  PubMed  Google Scholar 

  12. Wang H, Sun R, Cao Y, Pei W, Sun Y, Zhou H, Wu X, Zhang F, Luo L, Shen Q, Xu G, Sun S (2015) OsSIZ1, a SUMO E3 ligase gene, is Involved in the regulation of the responses to phosphate and nitrogen in rice. Plant Cell Physiol 56(12):2381–2395

    CAS  PubMed  Google Scholar 

  13. Mishra N, Sun L, Zhu X, Smith J, Prakash Srivastava A, Yang X, Pehlivan N, Esmaeili N, Luo H, Shen G, Jones D, Auld D, Burke J, Payton P, Zhang H (2017) Overexpression of the rice SUMO E3 ligase gene OsSIZ1 in cotton enhances drought and heat tolerance, and substantially improves fiber yields in the field under reduced irrigation and rainfed conditions. Plant Cell Physiol 58(4):735–774

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang S, Qi Y, Liu M, Yang C (2013) SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana(F). J Integr Plant Biol 55(1):83–95

    CAS  PubMed  Google Scholar 

  15. Murtas G, Reeves PH, Fu YF, Bancroft I, Dean C, Coupland G (2003) A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates. Plant Cell 15(10):2308–2319

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gomez-Mena C, Pineiro M, Franco-Zorrilla JM, Salinas J, Coupland G, Martinez-Zapater JM (2001) early bolting in short days: an Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy. Plant Cell 13(5):1011–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Burg HAVD, Kini RK, Schuurink RC, Takken FLW (2010) Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 22(6):1998–2016

    PubMed  PubMed Central  Google Scholar 

  18. Li Y, Wang G, Xu Z, Li J, Sun M, Guo J, Ji W (2017) Organization and regulation of soybean SUMOylation system under abiotic stress conditions. Front Plant Sci 8:1458

    PubMed  PubMed Central  Google Scholar 

  19. Ji W, Cong R, Li S, Li R, Qin Z, Li Y, Zhou X, Chen S, Li J (2016) Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Front Plant Sci 7:573

    PubMed  PubMed Central  Google Scholar 

  20. Ji W, Koh J, Li S, Zhu N, Dufresne CP, Zhao X, Chen S, Li J (2015) Quantitative proteomics reveals an important role of GsCBRLK in salt stress response of soybean. Plant Soil 402(1):159–178

    Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  22. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    CAS  Google Scholar 

  23. Miller MJ, Barrett-Wilt GA, Hua Z, Vierstra RD (2010) Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc Natl Acad Sci USA 107(38):16512–16517

    CAS  PubMed  Google Scholar 

  24. Chen L, Cai Y, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) Soybean hairy roots produced in vitro by Agrobacterium rhizogenes-mediated transformation. Crop J 6(2):162–171

    Google Scholar 

  25. Zhang H, Mao X, Wang C, Jing RJPO (2010) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS ONE 5:e16041

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Zhu J, Sun S, Cui F, Han Y, Peng Z, Zhang X, Wan S, Li G (2019) Defining the function of SUMO system in pod development and abiotic stresses in Peanut. BMC Plant Biol 19(1):593

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Srivastava AK, Zhang C, Yates G, Bailey M, Brown A, Sadanandom A (2016) SUMO Is a critical regulator of salt stress responses in rice. Plant Physiol 170(4):2378–2391

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Castro PH, Tavares RM, Bejarano ER, Azevedo H (2012) SUMO, a heavyweight player in plant abiotic stress responses. Cell Mol Life Sci 69(19):3269–3283

    CAS  PubMed  Google Scholar 

  29. Joungsu JOODHC, Sang Hyon KIM, Sang Ik SONG (2020) Cellular Localization of rice SUMO/SUMO conjugates and in vitro sumoylation using rice components. Rice Sci 27(1):1–4

    Google Scholar 

  30. Li S, Lin M, Wang J, Zhang L, Lin M, Hu Z, Qi Z, Jiang H, Fu Y, Xin D, Liu C, Chen Q (2019) Regulation of soybean SUMOylation system in response to Phytophthora sojae infection and heat shock. Plant Growth Regul 87(1):69–82

    CAS  Google Scholar 

  31. Augustine RC, York SL, Rytz TC, Vierstra RD (2016) Defining the SUMO system in maize: SUMOylation is up-regulated during endosperm development and rapidly induced by stress. Plant Physiol 171(3):2191–2210

    PubMed  PubMed Central  Google Scholar 

  32. Reed JM, Dervinis C, Morse AM, Davis JM (2010) The SUMO conjugation pathway in Populus: genomic analysis, tissue-specific and inducible SUMOylation and in vitro de-SUMOylation. Planta 232(1):51–59

    CAS  PubMed  Google Scholar 

  33. Lois LM (2003) Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15(6):1347–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Skubacz A, Daszkowska-Golec A, Szarejko I (2016) The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci 7:1884

    PubMed  PubMed Central  Google Scholar 

  35. Lopez-Molina L, Sb M, Mclachlin DT, Chait BT, Chua NHJPJ (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32(3):317–328

    CAS  PubMed  Google Scholar 

  36. Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci USA 106(13):5418–5423

    CAS  PubMed  Google Scholar 

  37. Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-Gonzalez E (2014) Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front Plant Sci 5:190

    PubMed  PubMed Central  Google Scholar 

  38. Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardie D, Thomas M (2009) SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J 59(2):316–328

    CAS  PubMed  Google Scholar 

  39. Liu XJ, Liu X, An XH, Han PL, You CX, Hao YJ (2017) An apple protein kinase MdSnRK1.1 Interacts with MdCAIP1 to regulate ABA sensitivity. Plant Cell Physiol 58(10):1631–1641

    CAS  PubMed  Google Scholar 

  40. Simpson-Lavy KJ, Johnston M (2013) SUMOylation regulates the SNF1 protein kinase. Proc Natl Acad Sci USA 110(43):17432–17437

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31971832) and Natural Science Foundation of Heilongjiang Province of China (YQ2019C006).

Author information

Authors and Affiliations

Authors

Contributions

JG performed the analysis and laboratory assays and wrote the manuscript. SW and GW contributed to the bioinformatics analysis and preparation of all figures. RL, YW, and YG provide help in analysis of qRT-PCR and western blot. WJ conceived and designed the experiments, facilitated the project, and assisted in manuscript preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Ji.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2020_5433_MOESM1_ESM.png

Fig. S1 Schematic representation of plant expression vector pTF101-6×His-GmSUMO2 and pTF101-6×His-GmSUMO2(H94R) used for overexpression in soybean hairy roots, containing GmSUMO2 or GmSUMO2(H94R) fused with 6×His at the 5’ terminal cloned at Xba I and Sac I sites driven by CaMV35S promoter. Supplementary file1 (PNG 11 kb)

11033_2020_5433_MOESM2_ESM.png

Fig. S2 Overexpression of GmSUMO2 decreased the average areas of roots under 25 μM ABA treatment. The data represented the mean ± SD of three independent experiments. Statistical significance was determined using ANOVA (**, P<0.01). Supplementary file2 (PNG 12 kb)

Table S1 Names and sequences of the primers. Supplementary file3 (DOCX 22 kb)

Table S2 Composition of plant culture medium. Supplementary file4 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Wang, S., Wang, G. et al. Overexpression of GmSUMO2 gene confers increased abscisic acid sensitivity in transgenic soybean hairy roots. Mol Biol Rep 47, 3475–3484 (2020). https://doi.org/10.1007/s11033-020-05433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05433-3

Keywords

Navigation