Skip to main content
Log in

Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea (Cajanus scarabaeoides)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In higher plants, flower development is a result of crosstalk between many factors like photoperiod, vernalization, hormone concentration, epigenetic modification etc. and is also regulated by non-coding RNAs (ncRNAs). In the present study, we are reporting the involvement of long non-coding RNAs (lncRNAs) and miRNAs during the process of flower development in Cajanus scarabaeoides, an important wild relative of pigeonpea. The transcriptome of floral and leaf tissues revealed a total of 1672 lncRNAs and 57 miRNAs being expressed during flower development. Prediction analysis of identified lncRNAs showed that 1593 lncRNAs were targeting 3420 mRNAs and among these, 98 were transcription factors (TFs) belonging to 48 groups. All the identified 57 miRNAs were novel, suggesting their genera specificity. Prediction of the secondary structure of lncRNAs and miRNAs followed by interaction analysis revealed that 199 lncRNAs could interact with 47 miRNAs where miRNAs were acting in the root of interaction. Gene Ontology of the ncRNAs and their targets showed the potential role of lncRNAs and miRNAs in the flower development of C. scarabaeoides. Among the identified interactions, 17 lncRNAs were endogenous target mimics (eTMs) for miRNAs that target flowering-related transcription factors. Expression analysis of identified transcripts revealed that higher expression of Csa-lncRNA_1231 in the bud sequesters Csa-miRNA-156b by indirectly mimicking the miRNA and leading to increased expression of flower-specific SQUAMOSA promoter-binding protein-like (SPL-12) TF indicating their potential role in flower development. The present study will help in understanding the molecular regulatory mechanism governing the induction of flowering in C. scarabaeoides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AGO:

Argonaute

ARF:

Auxin responsive factor

BLAST:

Basic local alignment search tool

bp:

Base pairs

cDNA:

Complementary DNA

CMS system:

Cytoplasmic male-sterile system

COG:

Clusters of orthologous groups

eTMs:

Endogenous target mimics

GO:

Gene ontology

kb:

Kilo base

KEGG:

Kyoto encyclopedia of genes and genomes

lincRNAs:

Long intergenic non-coding RNAs

lncRNAs:

Long non-coding RNAs

min:

Minutes

miRNAs:

MicroRNAs

mRNAs:

Messenger RNAs

NATs:

Natural antisense transcripts

ncRNAs:

Non-coding RNAs

Nr database:

Non-redundant protein database

nt:

Nucleotides

ORF’s:

Open reading frames

PCR:

Polymerase chain reaction

pi-RNAs:

Piwi-interacting RNAs

pri-miRNAs:

Primary miRNAs

qRT-PCR:

Quantitative real time PCR

RISC:

RNA-induced silencing complex

r-RNAs:

Ribosomal RNAs

sec:

Seconds

siRNAs:

Small interfering RNAs

snoRNAs:

Small nucleolar RNAs

snRNAs:

Small Nuclear RNAs

SPL:

SQUAMOSA promoter-binding protein like

tasi-RNAs:

Trans-acting small interfering RNAs

TF’s:

Transcription factors

t-RNAs:

Transfer RNAs

UTRs:

Untranslated regions

References

  1. Saxena KB (2008) Genetic improvement of pigeon pea-a review. Trop Plant Biol 1:159–178. https://doi.org/10.1007/s12042-008-9014-1

    Article  Google Scholar 

  2. Khoury CK, Castañeda-Alvarez NP, Achicanoy HA et al (2015) Crop wild relatives of pigeon pea (Cajanus cajan (L.) Millsp.): distributions, ex-situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol Conserv 184:259–270. https://doi.org/10.1016/j.biocon.2015.01.032

    Article  Google Scholar 

  3. Kassa MT, Penmetsa RV, Carrasquilla-Garcia N et al (2012) Genetic patterns of domestication in pigeonpea (Cajanus cajan (L.) Millsp.) and wild Cajanus relatives. PLoS ONE 7:e39563. https://doi.org/10.1371/journal.pone.0039563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choudhary AK, Singh IP (2015) A study on comparative fertility restoration in A2 and A4 cytoplasms and its implication in breeding hybrid pigeonpea [Cajanus cajan (L.) Millspaugh]. AJPS 6:385–391. https://doi.org/10.4236/ajps.2015.62044

    Article  Google Scholar 

  5. Yoo SY, Kardailsky I, Lee JS et al (2004) Acceleration of flowering by overexpression of MFT (Mother of FT and TFL1). Mol Cells 17:95–101

    CAS  PubMed  Google Scholar 

  6. Hong Y, Jackson S (2015) Floral induction and flower formation-the role and potential applications of miRNAs. Plant Biotechnol J 13:282–292. https://doi.org/10.1111/pbi.12340

    Article  CAS  PubMed  Google Scholar 

  7. Bai Y, Dai X, Harrison AP, Chen M (2015) RNA regulatory networks in animals and plants: A long noncoding RNA perspective. Brief Funct Genomics 14:91–101. https://doi.org/10.1093/bfgp/elu017

    Article  CAS  PubMed  Google Scholar 

  8. Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227. https://doi.org/10.1038/nature07672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10:924–933. https://doi.org/10.4161/rna.24604

    Article  CAS  PubMed Central  Google Scholar 

  10. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by non-coding RNAs. Cell 129:1311–1323. https://doi.org/10.1016/j.cell.2007.05.02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maenner S, Blaud M, Fouillen L et al (2010) 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol 8:e1000276. https://doi.org/10.1371/journal.pbio.1000276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802. https://doi.org/10.1038/nature0861

    Article  CAS  PubMed  Google Scholar 

  13. Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79. https://doi.org/10.1126/science.1197349

    Article  CAS  PubMed  Google Scholar 

  14. Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037. https://doi.org/10.1038/ng2079

    Article  CAS  PubMed  Google Scholar 

  15. Wang A, Hu J, Gao C et al (2019) Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapassp. chinensis). Sci Rep 9:5002. https://doi.org/10.1038/s41598-019-41428-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang CY, Liu SR, Zhang XY et al (2017) Genome-wide screening and characterization of long non-coding RNAs involved in flowering development of trifoliate orange (Poncirustrifoliata L. Raf.). Sci Rep 7:43226. https://doi.org/10.1038/srep43226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X, Xing X, Xu S et al (2018) Genome-wide identification and functional prediction of tobacco lncRNAs responsive to root-knot nematode stress. PLoS ONE 13:e0204506. https://doi.org/10.1371/journal.pone.0204506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou Y, Cho WK, Byun HS et al (2019) Genome-wide identification of long non-coding RNAs in tomato plants irradiated by neutrons followed by infection with Tomato yellow leaf curl virus. PeerJ 7:e6286. https://doi.org/10.7717/peerj.6286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao J, Ajadi AA, Wang Y et al (2020) Genome-wide identification of lncRNAs during rice seed development. Genes 11:243. https://doi.org/10.3390/genes11030243

    Article  CAS  PubMed Central  Google Scholar 

  20. Wu HJ, Wang ZM, Wang M et al (2013) Wide spread long non-coding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884. https://doi.org/10.1104/pp.113.215962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ye CY, Xu H, Shen E et al (2014) Genome-wide identification of non-coding RNAs interacted with microRNAs in soybean. Front Plant Sci 5:743. https://doi.org/10.3389/fpls.2014.00743

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang J, Yu W, Yang Y et al (2015) Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci Rep 5:16946. https://doi.org/10.1038/srep16946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sahu S, Rao AR, Pandey J et al (2018) Genome-wide identification and characterization of lncRNAs and miRNAs in cluster bean (Cyamopsis tetragonoloba). Gene 667:112–121. https://doi.org/10.1016/j.gene.2018.05.027

    Article  CAS  PubMed  Google Scholar 

  24. Varshney D, Rawal HC, Dubey H et al (2019) Tissue specific long non-coding RNAs are involved in aroma formation of black tea. Ind Crops Prod 133:79–89. https://doi.org/10.1016/j.indcrop.2019.03

    Article  CAS  Google Scholar 

  25. Reinhart BJ, Weinstein EG, Rhoades MW et al (2002) MicroRNAs in plants. Genes Dev 16:1616–1626. https://doi.org/10.1101/gad.1004402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114. https://doi.org/10.1038/nrg2290

    Article  CAS  PubMed  Google Scholar 

  27. Navarro L, Dunoyer P, Jay F et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science (New York, NY) 312:436–439. https://doi.org/10.1126/science.1126088

    Article  CAS  Google Scholar 

  28. Zhang B, Wang Q, Wang K et al (2007) Identification of cotton microRNAs and their targets. Gene 397:26–37. https://doi.org/10.1016/j.gene.2007.03.020

    Article  CAS  PubMed  Google Scholar 

  29. Nithin C, Patwa N, Thomas A et al (2015) Computational prediction of miRNAs and their targets in Phaseolus vulgaris using simple sequence repeat signatures. BMC Plant Biol 15:1–16. https://doi.org/10.1186/s12870-015-0516-3

    Article  CAS  Google Scholar 

  30. Nithin C, Thomas A, Basak J, Bahadur RP (2017) Genome-wide identification of miRNAs and lncRNAs in Cajanus cajan. BMC Genomics 18:1–14. https://doi.org/10.1186/s12864-017-4232-2

    Article  CAS  Google Scholar 

  31. Matts J, Jagadeeswaran G, Roe BA, Sunkar R (2010) Identification of microRNAs and their targets in switch grass, a model biofuel plant species. J Plant Physiol 167:896–904. https://doi.org/10.1016/j.jplph.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  32. Xie F, Frazier TP, Zhang B (2011) Identification, characterization and expression analysis of microRNAs and their targets in the potato (Solanumtuberosum). Gene 473:8–22. https://doi.org/10.1016/j.gene.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  33. Wu G, Park MY, Conway SR et al (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759. https://doi.org/10.1016/j.cell.2009.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Raman S, Greb T, Peaucelle A et al (2008) Interplay of miR164, cup-shaped cotyledon genes and lateral suppressor controls axillary meristem formation in Arabidopsis thaliana. Plant J 55:65–76. https://doi.org/10.1111/j.1365-313X.2008.03483

    Article  CAS  PubMed  Google Scholar 

  35. Jung JH, Park CM (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327–1338. https://doi.org/10.1007/s00425-006-0439-1

    Article  CAS  PubMed  Google Scholar 

  36. Nigam D, Saxena S, Ramakrishna G et al (2017) De novo assembly and characterization of Cajanus scarabaeoides (L.) Thouars Transcriptome by paired-end sequencing. Front Mol Biosci 4:48. https://doi.org/10.3389/fmolb.2017.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. https://doi.org/10.1186/gb-2013-14-4-r36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-Seq experiments with top hat and cufflinks. Nat Protoc 7:562–578. https://doi.org/10.1038/nprot.2012.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kong L, Zhang Y, Ye ZQ et al (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:345–349. https://doi.org/10.1093/nar/gkm391

    Article  Google Scholar 

  41. Sun L, Luo H, Bu D et al (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41:e166. https://doi.org/10.1093/nar/gkt646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jia H, Osak M, Bogu GK et al (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16:1478–1487. https://doi.org/10.1261/RNA.1951310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tafer H, Hofacker IL (2008) RNAplex: A fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2663. https://doi.org/10.1093/bioinformatics/btn193

    Article  CAS  PubMed  Google Scholar 

  44. Dai X, Zhuang Z, Zhao PX (2018) PsRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46:W49–W54. https://doi.org/10.1093/nar/gky316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saito R, Smoot ME, Ono K, Ruscheinski J (2013) A travel guide to Cytoscape plugins. Nat Methods 9:1069–1076. https://doi.org/10.1038/nmeth.2212

    Article  CAS  Google Scholar 

  46. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CTmethod. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  47. Tyagi A, Nigam D, Mithra SVA et al (2018) Genome-wide discovery of tissue-specific miRNAs in cluster bean (Cyamopsis tetragonoloba) indicates their association with galactomannan biosynthesis. Plant Biotechnol J 16:1241–1257. https://doi.org/10.1111/pbi.12866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Di Rubbo S, Irani NG, Kim SY et al (2013) The clathrin adaptor complex AP-2 mediatesendocytosis of BRASSINOSTEROID INSENSITIVE1 in Arabidopsis. Plant Cell 25:2986–2997. https://doi.org/10.1105/tpc.113.114058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang W, Han Z, Guo Q et al (2014) Identification of maize long non-coding RNAs responsive to drought stress. PLoS ONE 9:98958. https://doi.org/10.1371/journal.pone.0098958

    Article  CAS  Google Scholar 

  50. Wen J, Parker BJ, Weiller GF (2007) In Silico identification and characterization of mRNA-like non-coding transcripts in Medicago truncatula. Silico Biol 7:485–505

    CAS  Google Scholar 

  51. Richter R, Bastakis E, Schwechheimer C (2013) Cross-repressive interactions between SOC1and the GATAs GNC and GNL/CGA1 in the control of greening cold tolerance and flowering time in Arabidopsis. Plant Physiol 162:1992–2004. https://doi.org/10.1104/pp.113.219238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Masiero S, Colombo L, Grini PE et al (2011) The emerging importance of Type I MADSBox transcription factors for plant reproduction. Plant Cell 23:865872. https://doi.org/10.1105/tpc.110.081737

    Article  CAS  Google Scholar 

  53. Moyano E, Martinez-Garcia JF, Martin C (1996) Apparent redundancy in MYB gene function provides gearing for the control of flavonoid biosynthesis in Antirrhinum flowers. Plant Cell 8:1519–1532. https://doi.org/10.1105/tpc.8.9.1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Laitinen RAE, Immanen J, Auvinen P et al (2005) Analysis of the floral transcriptome uncovers new regulators of organ determination and gene families related to flower organ differentiation in Gerbera hybrida (Asteraceae). Genome Res 15:475–486. https://doi.org/10.1101/gr.3043705

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914. https://doi.org/10.1016/j.molcel.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khemka N, Singh VK, Garg R, Jain M (2016) Genome-wide analysis of long intergenic non-coding RNAs in chickpea and their potential role in flower development. Sci Rep 6:33297. https://doi.org/10.1038/srep33297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bohra P, Das A, Milner MJ et al (2018) Long non-coding rnas as endogenous target mimics and exploration of their role in low nutrient stress tolerance in plants. Genes (Basel) 9:459. https://doi.org/10.3390/genes9090459

    Article  CAS  Google Scholar 

  58. Fan C, Hao Z, Yan J, Li G (2015) Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize. BMC Genomics 16:793. https://doi.org/10.1186/s12864-015-2024-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support received from the Director, ICAR-National Institute for Plant Biotechnology, NewDelhi.

Funding

We acknowledge the financial support received from ICAR-National Institute for Plant Biotechnology, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by KG and NKS; AD and SS conducted experiments; and all authors analyzed, wrote and edited the manuscript. All authors read and approve the final manuscript.

Corresponding author

Correspondence to Kishor Gaikwad.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Saxena, S., Kumar, K. et al. Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea (Cajanus scarabaeoides). Mol Biol Rep 47, 3305–3317 (2020). https://doi.org/10.1007/s11033-020-05400-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05400-y

Keywords

Navigation