Skip to main content

Stem cell therapy: old challenges and new solutions

Abstract

Stem cell therapy (SCT), born as therapeutic revolution to replace pharmacological treatments, remains a hope and not yet an effective solution. Accordingly, stem cells cannot be conceivable as a “canonical” drug, because of their unique biological properties. A new reorientation in this field is emerging, based on a better understanding of stem cell biology and use of cutting-edge technologies and innovative disciplines. This will permit to solve the gaps, failures, and long-term needs, such as the retention, survival and integration of stem cells, by employing pharmacology, genetic manipulation, biological or material incorporation. Consequently, the clinical applicability of SCT for chronic human diseases will be extended, as well as its effectiveness and success, leading to long-awaited medical revolution. Here, some of these aspects are summarized, reviewing and discussing recent advances in this rapidly developing research field.

This is a preview of subscription content, access via your institution.

Fig. 1

reproduced from the article by Tewary et al. (2018) with permission from Springer Nature]

Fig. 2

reproduced from the article by Bellin et al. (2012) with permission from Springer Nature]

Fig. 3
Fig. 4

reproduced from the article by Ong et al. (2018) with permission from Springer Nature]

Fig. 5

reproduced from the open-access article by Yuan et al. (2018) distributed by Frontiers Open Access Publisher under the terms of the Creative Commons Attribution License (CC BY)]

Abbreviations

ASC:

Adipose stem cells

ATMPs:

Advanced therapy medicinal products

BMMNC:

Bone marrow derived mononuclear cells

EPC:

Endothelial progenitor cells

ES:

Embryonic stem cells

HSPCs:

Hematopoietic stem progenitor cells

HSC:

Hematopoietic stem cells

iPSC:

Induced pluripotent cells

MSC:

Mesenchymal stem cells

PBMC:

Peripheral blood mononuclear cells

RegMed:

Regenerative medicine

SCT:

Stem cell therapy

UCMSC:

Umbilical cord mesenchymal stem cells

References

  1. 1.

    Balistreri CR, Garagnani P, Madonna R, Vaiserman A, Melino G (2019) Developmental programming of adult haematopoiesis system. Ageing Res Rev 54:100918

    PubMed  Google Scholar 

  2. 2.

    Lin B, Srikanth P, Castle AC et al (2018) Modulating cell fate as a therapeutic strategy. Cell Stem Cell 23:329–341

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG (2019) Advances in stem cell research and therapeutic development. Nat Cell Biol 21:801–811

    PubMed  Google Scholar 

  4. 4.

    Polykandriotis E, Popescu LM, Horch RE (2010) Regenerative medicine: then and now—an update of recent history into future possibilities. J Cell Mol Med 14:2350–2358

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Seoane-Vazquez E, Shukla V, Rodriguez-Monguio R (2019) Innovation and competition in advanced therapy medicinal products. EMBO Mol Med 11:e9992

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Atilla E, Kilic P, Gurman G (2018) Cellular therapies: day by day, all the way. Transfus Apher Sci 57:187–196

    PubMed  Google Scholar 

  7. 7.

    Balistreri CR (2018) Anti-inflamm-ageing and/or anti-age-related disease emerging treatments: a historical alchemy or revolutionary effective procedures? Mediators Inflamm 2018:3705389

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Stoltz JF, de Isla N, Li YP et al (2015) Stem cells and regenerative medicine: myth or reality of the 21th century. Stem Cells Int 2015:734731

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Stoltz JF, Bensoussan D, Zhang L et al (2015) Stem cells and applications: a survey. Biomed Mater Eng 25:3–26

    PubMed  Google Scholar 

  10. 10.

    Ogura F, Wakao S, Kuroda Y et al (2014) Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev 23:717–728

    CAS  PubMed  Google Scholar 

  11. 11.

    Argentati C, Morena F, Bazzucchi M, Armentano I, Emiliani C, Martino S (2018) Adipose stem cell translational applications: from bench-to-bedside. Int J Mol Sci. https://doi.org/10.3390/ijms19113475

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Puissant B, Barreau C, Bourin P et al (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129:118–129

    PubMed  Google Scholar 

  13. 13.

    Si Z, Wang X, Sun C et al (2019) Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother 114:108765

    CAS  PubMed  Google Scholar 

  14. 14.

    Ciuffi S, Zonefrati R, Brandi ML (2017) Adipose stem cells for bone tissue repair. Clin Cases Miner Bone Metab 14:217–226

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Fang B, Song Y, Zhao RC, Han Q, Lin Q (2007) Using human adipose tissue-derived mesenchymal stem cells as salvage therapy for hepatic graft-versus-host disease resembling acute hepatitis. Transpl Proc 39:1710–1713

    CAS  Google Scholar 

  16. 16.

    Maslova O, Novak M, Kruzliak P (2015) Umbilical cord tissue-derived cells as therapeutic agents. Stem Cells Int 2015:150609

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Goligorsky MS (2014) Endothelial progenitor cells: from senescence to rejuvenation. Semin Nephrol 34:365–373

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Balistreri CR, Buffa S, Pisano C, Lio D, Ruvolo G, Mazzesi G (2015) Are endothelial progenitor cells the real solution for cardiovascular diseases? Focus on controversies and perspectives. Biomed Res Int 2015:835934

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Olivieri F, Pompilio G, Balistreri CR (2016) Endothelial progenitor cells in ageing. Mech Ageing Dev 159:1–3

    PubMed  Google Scholar 

  20. 20.

    Angelini F, Pagano F, Bordin A et al (2017) The impact of environmental factors in influencing epigenetics related to oxidative states in the cardiovascular system. Oxid Med Cell Longev 2017:2712751

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    De Falco E, Carnevale R, Pagano F et al (2016) Role of NOX2 in mediating doxorubicin-induced senescence in human endothelial progenitor cells. Mech Ageing Dev 159:37–43

    PubMed  Google Scholar 

  22. 22.

    Dwarshuis NJ, Parratt K, Santiago-Miranda A, Roy K (2017) Cells as advanced therapeutics: state-of-the-art, challenges, and opportunities in large scale biomanufacturing of high-quality cells for adoptive immunotherapies. Adv Drug Deliv Rev 114:222–239

    CAS  PubMed  Google Scholar 

  23. 23.

    Drummond-Barbosa D (2008) Stem cells, their niches and the systemic environment: an aging network. Genetics 180:1787–1797

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Heidary Rouchi A, Mahdavi-Mazdeh M (2015) Regenerative medicine in organ and tissue transplantation: shortly and practically achievable? Int J Organ Transpl Med 6:93–98

    CAS  Google Scholar 

  25. 25.

    Feyen DAM, Gaetani R, Doevendans PA, Sluijter JPG (2016) Stem cell-based therapy: Improving myocardial cell delivery. Adv Drug Deliv Rev 106:104–115

    CAS  PubMed  Google Scholar 

  26. 26.

    Liu S, Zhou J, Zhang X et al (2016) Strategies to optimize adult stem cell therapy for tissue regeneration. Int J Mol Sci 17(6):982

    PubMed Central  Google Scholar 

  27. 27.

    Kumar LP, Kandoi S, Misra R, Vijayalakshmi S, Rajagopal K, Verma RS (2019) The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev 46:1–9

    Google Scholar 

  28. 28.

    Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A (2019) Substantial overview on mesenchymal stem cell biological and physical properties as an opportunity in translational medicine. Int J Mol Sci 20(21):5386

    PubMed Central  Google Scholar 

  29. 29.

    Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Neves J, Sousa-Victor P, Jasper H (2017) Rejuvenating strategies for stem cell-based therapies in aging. Cell Stem Cell 20:161–175

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Spaltro G, Avitabile D, De Falco E, Gambini E (2016) Physiological conditions influencing regenerative potential of stem cells. Front Biosci (Landmark Ed) 21:1126–1150

    CAS  Google Scholar 

  32. 32.

    Chao JR, Lamba DA, Klesert TR et al (2017) Transplantation of human embryonic stem cell-derived retinal cells into the subretinal space of a non-human primate. Transl Vis Sci Technol 6:4

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Gloushankova NA, Zhitnyak IY, Rubtsova SN (2018) Role of epithelial-mesenchymal transition in tumor progression. Biochemistry (Mosc) 83:1469–1476

    CAS  Google Scholar 

  34. 34.

    Wu HH, Zhou Y, Tabata Y, Gao JQ (2019) Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J Control Release 294:102–113

    CAS  PubMed  Google Scholar 

  35. 35.

    Accomasso L, Gallina C, Turinetto V, Giachino C (2016) Stem cell tracking with nanoparticles for regenerative medicine purposes: an overview. Stem Cells Int 2016:7920358

    PubMed  Google Scholar 

  36. 36.

    Kato R, Matsumoto M, Sasaki H et al (2016) Parametric analysis of colony morphology of non-labelled live human pluripotent stem cells for cell quality control. Sci Rep 6:34009

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lo Sardo V, Ferguson W, Erikson GA, Topol EJ, Baldwin KK, Torkamani A (2017) Influence of donor age on induced pluripotent stem cells. Nat Biotechnol 35:69–74

    CAS  PubMed  Google Scholar 

  38. 38.

    Suryaprakash S, Lao YH, Cho HY et al (2019) Engineered mesenchymal stem cell/nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy. Nano Lett 19:1701–1705

    CAS  PubMed  Google Scholar 

  39. 39.

    Wang X, Chen H, Zeng X et al (2019) Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharm Sin B 9:167–176

    PubMed  Google Scholar 

  40. 40.

    Hu YL, Miao PH, Huang B et al (2014) Reversal of tumor growth by gene modification of mesenchymal stem cells using spermine-pullulan/DNA nanoparticles. J Biomed Nanotechnol 10:299–308

    CAS  PubMed  Google Scholar 

  41. 41.

    Labusca L, Herea DD, Mashayekhi K (2018) Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World J Stem Cells 10:43–56

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Levy O, Brennen WN, Han E et al (2016) A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials 91:140–150

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Tran C, Damaser MS (2015) Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 82–83:1–11

    PubMed  Google Scholar 

  44. 44.

    Perets N, Betzer O, Shapira R et al (2019) Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders. Nano Lett 19:3422–3431

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ (2016) MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol 7:231

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(9):1852

    PubMed Central  Google Scholar 

  47. 47.

    Avolio E, Gianfranceschi G, Cesselli D et al (2014) Ex vivo molecular rejuvenation improves the therapeutic activity of senescent human cardiac stem cells in a mouse model of myocardial infarction. Stem Cells 32:2373–2385

    PubMed  Google Scholar 

  48. 48.

    Luo L, Tang J, Nishi K et al (2017) Fabrication of synthetic mesenchymal stem cells for the treatment of acute myocardial infarction in mice. Circ Res 120:1768–1775

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Li TS, Cheng K, Malliaras K et al (2012) Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol 59:942–953

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Xia L, Zhu W, Wang Y, He S, Chai R (2019) Regulation of neural stem cell proliferation and differentiation by graphene-based biomaterials. Neural Plast 2019:3608386

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Mashinchian O, Turner LA, Dalby MJ et al (2015) Regulation of stem cell fate by nanomaterial substrates. Nanomedicine (Lond) 10:829–847

    CAS  Google Scholar 

  52. 52.

    Irvine SA, Venkatraman SS (2016) Bioprinting and differentiation of stem cells. Molecules 21(9):1188

    PubMed Central  Google Scholar 

  53. 53.

    Roseti L, Cavallo C, Desando G et al (2018) Three-dimensional bioprinting of cartilage by the use of stem cells: a strategy to improve regeneration. Materials (Basel) 11(9):1749

    Google Scholar 

  54. 54.

    Kim TH, Choi JH, Jun Y et al (2018) 3D-cultured human placenta-derived mesenchymal stem cell spheroids enhance ovary function by inducing folliculogenesis. Sci Rep 8:15313

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Cesarz Z, Tamama K (2016) Spheroid culture of mesenchymal stem cells. Stem Cells Int 2016:9176357

    PubMed  Google Scholar 

  56. 56.

    Chen R, Li L, Feng L et al (2019) Biomaterial-assisted scalable cell production for cell therapy. Biomaterials. https://doi.org/10.1016/j.biomaterials.2019.119627

    Article  PubMed  Google Scholar 

  57. 57.

    Mawad D, Figtree G, Gentile C (2017) Current technologies based on the knowledge of the stem cells microenvironments. Adv Exp Med Biol 1041:245–262

    CAS  PubMed  Google Scholar 

  58. 58.

    Perkhofer L, Frappart PO, Muller M, Kleger A (2018) Importance of organoids for personalized medicine. Per Med 15:461–465

    CAS  PubMed  Google Scholar 

  59. 59.

    Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155

    CAS  PubMed  Google Scholar 

  60. 60.

    Scafetta G, Siciliano C, Frati G, De Falco E (2015) Culture of human limbal epithelial stem cells on tenon's fibroblast feeder-layers: a translational approach. Methods Mol Biol 1283:187–198

    CAS  PubMed  Google Scholar 

  61. 61.

    Scafetta G, Tricoli E, Siciliano C et al (2013) Suitability of human Tenon's fibroblasts as feeder cells for culturing human limbal epithelial stem cells. Stem Cell Rev Rep 9:847–857

    CAS  PubMed  Google Scholar 

  62. 62.

    Nankervis B, Jones M, Vang B, Brent Rice R Jr, Coeshott C, Beltzer J (2018) Optimizing T cell expansion in a hollow-fiber bioreactor. Curr Stem Cell Rep 4:46–51

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Tapia F, Vazquez-Ramirez D, Genzel Y, Reichl U (2016) Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. Appl Microbiol Biotechnol 100:2121–2132

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Park W, Jang S, Kim TW, Bae J, Oh TI, Lee E (2019) Microfluidic-printed microcarrier for in vitro expansion of adherent stem cells in 3D culture platform. Macromol Biosci 19:e1900136

    PubMed  Google Scholar 

  65. 65.

    Perucca Orfei C, Talo G, Vigano M et al (2018) Silk/fibroin microcarriers for mesenchymal stem cell delivery: optimization of cell seeding by the design of experiment. Pharmaceutics 10(4):200

    PubMed Central  Google Scholar 

  66. 66.

    Tavassoli H, Alhosseini SN, Tay A, Chan PPY, Weng Oh SK, Warkiani ME (2018) Large-scale production of stem cells utilizing microcarriers: a biomaterials engineering perspective from academic research to commercialized products. Biomaterials 181:333–346

    CAS  PubMed  Google Scholar 

  67. 67.

    Jossen V, van den Bos C, Eibl R, Eibl D (2018) Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol 102:3981–3994

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Baakdhah T, van der Kooy D (2019) Expansion of retinal stem cells and their progeny using cell microcarriers in a bioreactor. Biotechnol Prog 35:e2800

    PubMed  Google Scholar 

  69. 69.

    Bardy J, Chen AK, Lim YM et al (2013) Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells. Tissue Eng C 19:166–180

    CAS  Google Scholar 

  70. 70.

    Gupta P, Ismadi MZ, Verma PJ et al (2016) Optimization of agitation speed in spinner flask for microcarrier structural integrity and expansion of induced pluripotent stem cells. Cytotechnology 68:45–59

    CAS  PubMed  Google Scholar 

  71. 71.

    Alfred R, Radford J, Fan J et al (2011) Efficient suspension bioreactor expansion of murine embryonic stem cells on microcarriers in serum-free medium. Biotechnol Prog 27:811–823

    CAS  PubMed  Google Scholar 

  72. 72.

    Ting S, Lam A, Tong G et al (2018) Meticulous optimization of cardiomyocyte yields in a 3-stage continuous integrated agitation bioprocess. Stem Cell Res 31:161–173

    CAS  PubMed  Google Scholar 

  73. 73.

    Fang Q, Zhai M, Wu S et al (2019) Adipocyte-derived stem cell-based gene therapy upon adipogenic differentiation on microcarriers attenuates type 1 diabetes in mice. Stem Cell Res Ther 10:36

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Frauenschuh S, Reichmann E, Ibold Y, Goetz PM, Sittinger M, Ringe J (2007) A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells. Biotechnol Prog 23:187–193

    CAS  PubMed  Google Scholar 

  75. 75.

    Luetchford KA, Chaudhuri JB, De Bank PA (2020) Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering. Mater Sci Eng C 106:110116

    CAS  Google Scholar 

  76. 76.

    Poudineh M, Wang Z, Labib M et al (2018) Three-dimensional nanostructured architectures enable efficient neural differentiation of mesenchymal stem cells via mechanotransduction. Nano Lett 18:7188–7193

    CAS  PubMed  Google Scholar 

  77. 77.

    McCoy RJ, Widaa A, Watters KM et al (2013) Orchestrating osteogenic differentiation of mesenchymal stem cells—identification of placental growth factor as a mechanosensitive gene with a pro-osteogenic role. Stem Cells 31:2420–2431

    CAS  PubMed  Google Scholar 

  78. 78.

    Gruene M, Deiwick A, Koch L et al (2011) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng C 17:79–87

    Google Scholar 

  79. 79.

    Ylostalo JH, Bartosh TJ, Tiblow A, Prockop DJ (2014) Unique characteristics of human mesenchymal stromal/progenitor cells pre-activated in 3-dimensional cultures under different conditions. Cytotherapy 16:1486–1500

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Rothenberg AR, Ouyang L, Elisseeff JH (2011) Mesenchymal stem cell stimulation of tissue growth depends on differentiation state. Stem Cells Dev 20:405–414

    CAS  PubMed  Google Scholar 

  81. 81.

    Eswaramoorthy SD, Ramakrishna S, Rath SN (2019) Recent advances in three-dimensional bioprinting of stem cells. J Tissue Eng Regen Med 13:908–924

    CAS  PubMed  Google Scholar 

  82. 82.

    Rong Q, Li S, Zhou Y et al (2019) A novel method to improve the osteogenesis capacity of hUCMSCs with dual-directional pre-induction under screened co-culture conditions. Cell Prolif. https://doi.org/10.1111/cpr.12740

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Deng Y, Jiang C, Li C et al (2017) 3D printed scaffolds of calcium silicate-doped beta-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation. Sci Rep 7:5588

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Duttenhoefer F, Lara de Freitas R, Meury T et al (2013) 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. Eur Cell Mater 26:49–64; discussion 64–65

    CAS  PubMed  Google Scholar 

  85. 85.

    Filipowska J, Reilly GC, Osyczka AM (2016) A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage. Biotechnol Bioeng 113:1814–1824

    CAS  PubMed  Google Scholar 

  86. 86.

    Underhill GH, Khetani SR (2018) Bioengineered liver models for drug testing and cell differentiation studies. Cell Mol Gastroenterol Hepatol 5(426–439):e421

    Google Scholar 

  87. 87.

    Mehrasa R, Vaziri H, Oodi A et al (2014) Mesenchymal stem cells as a feeder layer can prevent apoptosis of expanded hematopoietic stem cells derived from cord blood. Int J Mol Cell Med 3:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Sun Y, Ding Q (2017) Genome engineering of stem cell organoids for disease modeling. Protein Cell 8:315–327

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Kwon SJ, Lee DW, Shah DA et al (2014) High-throughput and combinatorial gene expression on a chip for metabolism-induced toxicology screening. Nat Commun 5:3739

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Tan Z, Shan J, Rak-Raszewska A, Vainio SJ (2018) Embryonic stem cells derived kidney organoids as faithful models to target programmed nephrogenesis. Sci Rep 8:16618

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Yan L, Jiang B, Li E et al (2018) Scalable generation of mesenchymal stem cells from human embryonic stem cells in 3D. Int J Biol Sci 14:1196–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Hattori N (2014) Cerebral organoids model human brain development and microcephaly. Mov Disord 29:185

    PubMed  Google Scholar 

  93. 93.

    Lei Y, Schaffer DV (2013) A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci USA 110:E5039–5048

    CAS  PubMed  Google Scholar 

  94. 94.

    Konagaya S, Ando T, Yamauchi T, Suemori H, Iwata H (2015) Long-term maintenance of human induced pluripotent stem cells by automated cell culture system. Sci Rep 5:16647

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Gu Q, Tomaskovic-Crook E, Wallace GG, Crook JM (2017) 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation. Adv Healthc Mater 6(17):1700175

    Google Scholar 

  96. 96.

    Michael S, Sorg H, Peck CT et al (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE 8:e57741

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Dias AD, Unser AM, Xie Y, Chrisey DB, Corr DT (2014) Generating size-controlled embryoid bodies using laser direct-write. Biofabrication 6:025007

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Wu H, Zhu J, Huang Y, Wu D, Sun J (2018) Microfluidic-based single-cell study: current status and future perspective. Molecules 23(9):2347

    PubMed Central  Google Scholar 

  99. 99.

    Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 35:851–858

    CAS  PubMed  Google Scholar 

  101. 101.

    Khan M, Kishore R (2017) Stem cell exosomes: cell-freetherapy for organ repair. Methods Mol Biol 1553:315–321

    CAS  PubMed  Google Scholar 

  102. 102.

    Xiao B, Zhu Y, Huang J, Wang T, Wang F, Sun S (2019) Exosomal transfer of bone marrow mesenchymal stem cell-derived miR-340 attenuates endometrial fibrosis. Biol Open 8(5):bio039958

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Rosca AM, Tutuianu R, Titorencu ID (2018) Mesenchymal stromal cells derived exosomes as tools for chronic wound healing therapy. Rom J Morphol Embryol 59:655–662

    PubMed  Google Scholar 

  104. 104.

    Riazifar M, Pone EJ, Lotvall J, Zhao W (2017) Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol 57:125–154

    CAS  PubMed  Google Scholar 

  105. 105.

    Pan Q, Wang Y, Lan Q et al (2019) Exosomes derived from mesenchymal stem cells ameliorate hypoxia/reoxygenation-injured ECs via transferring microRNA-126. Stem Cells Int 2019:2831756

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Reza-Zaldivar EE, Hernandez-Sapiens MA, Minjarez B, Gutierrez-Mercado YK, Marquez-Aguirre AL, Canales-Aguirre AA (2018) Potential effects of MSC-derived exosomes in neuroplasticity in Alzheimer's disease. Front Cell Neurosci 12:317

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Ong SG, Lee WH, Zhou Y, Wu JC (2018) Mining exosomal microRNAs from human-induced pluripotent stem cells-derived cardiomyocytes for cardiac regeneration. Methods Mol Biol 1733:127–136

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Cheng X, Zhang G, Zhang L et al (2018) Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J Cell Mol Med 22:261–276

    CAS  PubMed  Google Scholar 

  109. 109.

    Tavakoli Dargani Z, Singla DK (2019) Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circ Physiol 317:H460–H471

    PubMed  Google Scholar 

  110. 110.

    Peng Y, Baulier E, Ke Y et al (2018) Human embryonic stem cells extracellular vesicles and their effects on immortalized human retinal Muller cells. PLoS ONE 13:e0194004

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Sonoda H, Lee BR, Park KH et al (2019) miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci Rep 9:4692

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Kim S, Kim TM (2019) Generation of mesenchymal stem-like cells for producing extracellular vesicles. World J Stem Cells 11:270–280

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Bae YU, Son Y, Kim CH et al (2019) Embryonic stem cell-derived mmu-miR-291a-3p inhibits cellular senescence in human dermal fibroblasts through the TGF-beta receptor 2 pathway. J Gerontol A 74:1359–1367

    Google Scholar 

  114. 114.

    Liao FL, Tan L, Liu H et al (2018) Hematopoietic stem cell-derived exosomes promote hematopoietic differentiation of mouse embryonic stem cells in vitro via inhibiting the miR126/Notch1 pathway. Acta Pharmacol Sin 39:552–560

    CAS  PubMed  Google Scholar 

  115. 115.

    Basu J, Ludlow JW (2016) Exosomes for repair, regeneration and rejuvenation. Expert Opin Biol Ther 16:489–506

    CAS  PubMed  Google Scholar 

  116. 116.

    Jing H, He X, Zheng J (2018) Exosomes and regenerative medicine: state of the art and perspectives. Transl Res 196:1–16

    CAS  PubMed  Google Scholar 

  117. 117.

    Surun D, von Melchner H, Schnutgen F (2018) CRISPR/Cas9 genome engineering in hematopoietic cells. Drug Discov Today Technol 28:33–39

    PubMed  Google Scholar 

  118. 118.

    Argani H (2019) Genome engineering for stem cell transplantation. Exp Clin Transpl 17:31–37

    Google Scholar 

  119. 119.

    Vaiserman A, De Falco E, Koliada A, Maslova O, Balistreri CR (2019) Anti-ageing gene therapy: not so far away? Ageing Res Rev 56:100977

    PubMed  Google Scholar 

  120. 120.

    Scola L, Giarratana RM, Torre S, Argano V, Lio D, Balistreri CR (2019) On the road to accurate biomarkers for cardiometabolic diseases by integrating precision and gender medicine approaches. Int J Mol Sci 20(23):6015

    PubMed Central  Google Scholar 

  121. 121.

    Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17:11–22

    CAS  PubMed  Google Scholar 

  122. 122.

    Lublin FD, Bowen JD, Huddlestone J et al (2014) Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study. Mult Scler Relat Disord 3:696–704

    PubMed  Google Scholar 

  123. 123.

    Mayer L, Pandak WM, Melmed GY et al (2013) Safety and tolerability of human placenta-derived cells (PDA001) in treatment-resistant Crohn's disease: a phase 1 study. Inflamm Bowel Dis 19:754–760

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Kim K, Doi A, Wen B et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Huang K, Fan G (2010) DNA methylation in cell differentiation and reprogramming: an emerging systematic view. Regen Med 5:531–544

    CAS  PubMed  Google Scholar 

  126. 126.

    Sukari A, Abdallah N, Nagasaka M (2019) Unleash the power of the mighty T cells-basis of adoptive cellular therapy. Crit Rev Oncol Hematol 136:1–12

    PubMed  Google Scholar 

  127. 127.

    Li N, Long B, Han W, Yuan S, Wang K (2017) microRNAs: important regulators of stem cells. Stem Cell Res Ther 8:110

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Hao J, Duan FF, Wang Y (2017) MicroRNAs and RNA binding protein regulators of microRNAs in the control of pluripotency and reprogramming. Curr Opin Genet Dev 46:95–103

    CAS  PubMed  Google Scholar 

  129. 129.

    Yoshihara M, Hayashizaki Y, Murakawa Y (2017) Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Rev Rep 13:7–16

    CAS  PubMed  Google Scholar 

  130. 130.

    Steinemann D, Gohring G, Schlegelberger B (2013) Genetic instability of modified stem cells—a first step towards malignant transformation? Am J Stem Cells 2:39–51

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Pasi CE, Dereli-Oz A, Negrini S et al (2011) Genomic instability in induced stem cells. Cell Death Differ 18:745–753

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Rennie K, Haukenfrers J, Ribecco-Lutkiewicz M et al (2013) Therapeutic potential of amniotic fluid-derived cells for treating the injured nervous system. Biochem Cell Biol 91:271–286

    CAS  PubMed  Google Scholar 

  133. 133.

    Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transpl 25:829–848

    Google Scholar 

  134. 134.

    Vagnozzi RJ, Maillet M, Sargent MA et al (2019) An acute immune response underlies the benefit of cardiac stem-cell therapy. Nature 577:405–409

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carmela Rita Balistreri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balistreri, C.R., De Falco, E., Bordin, A. et al. Stem cell therapy: old challenges and new solutions. Mol Biol Rep 47, 3117–3131 (2020). https://doi.org/10.1007/s11033-020-05353-2

Download citation

Keywords

  • Stem cell therapy
  • Regenerative medicine
  • Bio-nanotechnology
  • Bioprinting
  • 3D systems
  • Exosomes