Skip to main content
Log in

The synergistic anti-proliferative effect of the combination of diosmin and BEZ-235 (dactolisib) on the HCT-116 colorectal cancer cell line occurs through inhibition of the PI3K/Akt/mTOR/NF-κB axis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

One of the most lethal malignancies worldwide is colorectal cancer (CRC). Alterations in various signalling pathways, including PI3K-mTOR and NF-κB, have been reported in CRC with subsequent dysregulation of proliferation, apoptosis, angiogenesis and, questionably, autophagy processes. BEZ-235 (dactolisib) is a dual PI3K-mTOR inhibitor with potent anti-tumour activity. However, the observed toxicity of BEZ-235 necessitated the termination of its clinical trials. Hence, we aimed to evaluate the potential long-lasting anti-carcinogenic effects of adding diosmin (DIO, a natural NF-κB inhibitor) to BEZ-235 in HCT-116 CRC cells. The median inhibitory concentrations (IC50s) of BEZ-235 and/or DIO were evaluated in the HCT-116 CRC cell line. Caspase-3 activity was assessed colorimetrically, and p-Akt, NF-κB, CD1, VEGF and LC3B levels were assessed by ELISA. Additionally, LC3-II and P62 gene expression were assessed using qRT-PCR. The observed CIs (combination indices) and DRIs (dose reduction indices) confirmed the synergistic effect of DIO and BEZ-235. Co-administration of both drugs either in combination-1 (1 μM for BEZ-235, 250 μM for DIO) or in combination-2 (0.51 μM for BEZ-235 + 101.99 μM for DIO) inhibited the PI3K/Akt/mTOR/NF-κB axis, leading to the induction of apoptosis (via active caspase-3), and the inhibition of proliferation marker (CD1), angiogenesis marker (VEGF), autophagy protein (LC3B) and altered effects on LC3-IIandP62 gene expression. Our results reveal the synergistic chemotherapeutic effects of DIO combined with BEZ-235 in the HCT-116 CRC cell line and encourage future preclinical and clinical studies of this combination with reduced BEZ-235 concentrations to avoid its reported toxicity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CD1:

Cyclin D1

CRC:

Colorectal cancer

HIF1α:

Hypoxia-inducible factor-1 alpha

LC3B:

Human microtubule-associated proteins 1A/1B light chain 3 beta

LC3-II:

Microtubule-associated protein 1 light chain 3

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear factor-kappa B

p-Akt:

Phospho-Akt

PI3K:

Phosphatidylinositol-3-kinase

STAT-3:

Signal transducer and activator of transcription-3

VEGF:

Vascular endothelial growth factor

References

  1. Wolpin BM, Mayer RJ (2008) Systemic treatment of colorectal cancer. Gastroenterology 134(5):1296–1310. https://doi.org/10.1053/j.gastro.2008.02.098

    Article  CAS  PubMed  Google Scholar 

  2. Tabana YM, Dahham SS, Shah AM, Majid A (2016) Major signaling pathways of colorectal carcinogenesis. Recent Adv Colon Cancer 1:1–2

    Article  Google Scholar 

  3. Farooqi AA, De La Roche M, Djamgoz MB, Siddik ZH Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Seminars in Cancer Biology 58:65–79.

  4. Tiwari A, Saraf S, Verma A, Panda PK, Jain SK (2018) Novel targeting approaches and signaling pathways of colorectal cancer: an insight. World J Gastroenterol 24(39):4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu X, Ji Q, Fan Z, Li Q (2015) Cellular signaling pathways implicated in metastasis of colorectal cancer and the associated targeted agents. Future Oncol 11(21):2911–2922

    Article  CAS  PubMed  Google Scholar 

  6. Troiani T, Napolitano S, Della Corte CM, Martini G, Martinelli E, Morgillo F, Ciardiello F (2016) Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence. ESMO Open 1(5):e000088

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kumarpandurangan A, Divya T, Kumar K, Dineshbabu V, Velavan B, Sudhandiran G (2018) Colorectal carcinogenesis: insights into the cell death and signal transduction pathways: a review. World J Gastrointest Oncol 10(9):244

    Article  Google Scholar 

  8. Berg M, Soreide K (2012) EGFR and downstream genetic alterations in KRAS/BRAF and PI3K/AKT pathways in colorectal cancer: implications for targeted therapy. Discov Med 14(76):207–214

    PubMed  Google Scholar 

  9. Kojima M, Morisaki T, Sasaki N, Nakano K, Mibu R, Tanaka M, Katano M (2004) Increased nuclear factor-kB activation in human colorectal carcinoma and its correlation with tumor progression. Anticancer Res 24(2B):675–681

    CAS  PubMed  Google Scholar 

  10. Slattery ML, Mullany LE, Sakoda L, Samowitz WS, Wolff RK, Stevens JR, Herrick JS (2018) The NF-κB signalling pathway in colorectal cancer: associations between dysregulated gene and miRNA expression. J Cancer Res Clin Oncol 144(2):269–283

    Article  CAS  PubMed  Google Scholar 

  11. Brown LF, Berse B, Jackman RW, Tognazzi K, Manseau EJ, Senger DR, Dvorak HF (1993) Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Can Res 53(19):4727–4735

    CAS  Google Scholar 

  12. Bendardaf R, El-Serafi A, Syrjänend K, Collan Y, Pyrhönen S (2017) The effect of vascular endothelial growth factor-1 expression on survival of advanced colorectal cancer patients. Libyan J Med 12(1):1290741

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qian H-R, Shi Z-Q, Zhu H-P, Gu L-H, Wang X-F, Yang Y (2017) Interplay between apoptosis and autophagy in colorectal cancer. Oncotarget 8(37):62759

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fortin J, Mak TW (2016) Targeting PI3K signaling in cancer: a cautionary tale of two AKTs. Cancer Cell 29(4):429–431

    Article  CAS  PubMed  Google Scholar 

  15. Rychahou PG, Jackson LN, Silva SR, Rajaraman S, Evers BM (2006) Targeted molecular therapy of the PI3K pathway: therapeutic significance of PI3K subunit targeting in colorectal carcinoma. Ann Surg 243(6):833

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rychahou PG, Murillo CA, Evers BM (2005) Targeted RNA interference of PI3K pathway components sensitizes colon cancer cells to TNF-related apoptosis-inducing ligand (TRAIL). Surgery 138(2):391–397

    Article  PubMed  Google Scholar 

  17. Wang Q, Li N, Wang X, Kim MM, Evers BM (2002) Augmentation of sodium butyrate-induced apoptosis by phosphatidylinositol 3'-kinase inhibition in the KM20 human colon cancer cell line. Clin Cancer Res 8(6):1940–1947

    CAS  PubMed  Google Scholar 

  18. Hassanzadeh P (2011) Colorectal cancer and NF-κB signaling pathway. Gastroenterol Hepatol Bed Bench 4(3):127

    PubMed  PubMed Central  Google Scholar 

  19. Merga YJ, O'Hara A, Burkitt MD, Duckworth CA, Probert CS, Campbell BJ, Pritchard DM (2016) Importance of the alternative NF-kappaB activation pathway in inflammation-associated gastrointestinal carcinogenesis. Am J Physiol Gastrointest Liver Physiol 310(11):21

    Article  Google Scholar 

  20. Voboril R, Weberova-Voborilova J (2006) Constitutive NF-kappaB activity in colorectal cancer cells: impact on radiation-induced NF-kappaB activity, radiosensitivity, and apoptosis. Neoplasma 53(6):518–523

    CAS  PubMed  Google Scholar 

  21. Sakamoto K, Maeda S, Hikiba Y, Nakagawa H, Hayakawa Y, Shibata W, Yanai A, Ogura K, Omata M (2009) Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res 15(7):2248–2258

    Article  CAS  PubMed  Google Scholar 

  22. Ahluwalia A, Jones MK, Matysiak-Budnik T, Tarnawski AS (2014) VEGF and colon cancer growth beyond angiogenesis: does VEGF directly mediate colon cancer growth via a non-angiogenic mechanism? Curr Pharm Des 20(7):1041–1044

    Article  CAS  PubMed  Google Scholar 

  23. Brown L, Detmar M, Claffey K, Nagy J, Feng D, Dvorak A, Dvorak H (1997) Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. In: Goldberg ID, Rosen EM (eds) Regulation of angiogenesis. Springer, New York, pp 233–269

    Chapter  Google Scholar 

  24. Lee JC, Chow NH, Wang ST, Huang SM (2000) Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur J Cancer 36(6):748–753

    Article  CAS  PubMed  Google Scholar 

  25. Guba M, Seeliger H, Kleespies A, Jauch KW, Bruns C (2004) Vascular endothelial growth factor in colorectal cancer. Int J Colorectal Dis 19(6):510–517

    Article  PubMed  Google Scholar 

  26. Calvani M, Trisciuoglio D, Bergamaschi C, Shoemaker RH, Melillo G (2008) Differential involvement of vascular endothelial growth factor in the survival of hypoxic colon cancer cells. Can Res 68(1):285–291

    Article  CAS  Google Scholar 

  27. Ellis LM, Takahashi Y, Liu W, Shaheen RM (2000) Vascular endothelial growth factor in human colon cancer: biology and therapeutic implications. Oncologist 5(Supplement 1):11–15

    Article  CAS  PubMed  Google Scholar 

  28. Cudjoe EK, Kyte SL, Saleh T, Landry JW, Gewirtz DA (2019) Autophagy inhibition and chemosensitization in cancer therapy. In: Johnson DE (ed) Targeting cell survival pathways to enhance response to chemotherapy. Elsevier, Amsterdam, pp 259–273

    Chapter  Google Scholar 

  29. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15(7):713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sridhar S, Botbol Y, Macian F, Cuervo AM (2012) Autophagy and disease: always two sides to a problem. J Pathol 226(2):255–273

    Article  PubMed  Google Scholar 

  31. Brech A, Ahlquist T, Lothe RA, Stenmark H (2009) Autophagy in tumour suppression and promotion. Mol Oncol 3(4):366–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7(12):961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12(6):401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10(9):1533–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kenific CM, Debnath J (2015) Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 25(1):37–45

    Article  CAS  PubMed  Google Scholar 

  36. Maira S-M, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chene P, De Pover A, Schoemaker K (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7(7):1851–1863

    Article  CAS  PubMed  Google Scholar 

  37. Chiarini F, Grimaldi C, Ricci F, Tazzari PL, Evangelisti C, Ognibene A, Battistelli M, Falcieri E, Melchionda F, Pession A, Pagliaro P, McCubrey JA, Martelli AM (2010) Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res 70(20):8097–8107

    Article  CAS  PubMed  Google Scholar 

  38. Awasthi N, Yen PL, Schwarz MA, Schwarz RE (2012) The efficacy of a novel, dual PI3K/mTOR inhibitor NVP-BEZ235 to enhance chemotherapy and antiangiogenic response in pancreatic cancer. J Cell Biochem 113(3):784–791

    Article  CAS  PubMed  Google Scholar 

  39. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, Garcia-Echeverria C, Weissleder R, Mahmood U, Cantley LC, Wong KK (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14(12):1351–1356. https://doi.org/10.1038/nm.1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oh I, Cho H, Lee Y, Cheon M, Park D (2016) Blockage of Autophagy rescues the dual PI3K/mTOR inhibitor BEZ235-induced growth inhibition of colorectal cancer cells. Dev Reprod 20(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  41. Alqurashi N, Hashimi SM, Alowaidi F, Ivanovski S, Wei MQ (2018) Dual mTOR/PI3K inhibitor NVP-BEZ235 arrests colorectal cancer cell growth and displays differential inhibition of 4E-BP1. Oncol Rep 40(2):1083–1092

    CAS  PubMed  Google Scholar 

  42. Yang F, Gao J-Y, Chen H, Du Z-H, Zhang X-Q, Gao W (2017) Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer. OncoTargets Ther 10:4413

    Article  Google Scholar 

  43. Cao Y, Chong Y, Shen H, Zhang M, Huang J, Zhu Y, Zhang Z (2013) Combination of TNF-α and graphene oxide-loaded BEZ235 to enhance apoptosis of PIK3CA mutant colorectal cancer cells. J Mater Chem B 1(41):5602–5610

    Article  CAS  PubMed  Google Scholar 

  44. Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP-Y, Baldwin AS (2008) Akt-dependent regulation of NF-κB is controlled by mTOR and Raptor in association with IKK. Genes Dev 22(11):1490–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Romano MF, Avellino R, Petrella A, Bisogni R, Romano S, Venuta S (2004) Rapamycin inhibits doxorubicin-induced NF-κB/Rel nuclear activity and enhances the apoptosis of melanoma cells. Eur J Cancer 40(18):2829–2836

    Article  CAS  PubMed  Google Scholar 

  46. Dey N, Sun Y, Carlson JH, Wu H, Lin X, Leyland-Jones B, De P (2016) Anti-tumor efficacy of BEZ235 is complemented by its anti-angiogenic effects via downregulation of PI3K-mTOR-HIF1alpha signaling in HER2-defined breast cancers. Am J Cancer Res 6(4):714

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Roper J, Richardson MP, Wang WV, Richard LG, Chen W, Coffee EM, Sinnamon MJ, Lee L, Chen PC, Bronson RT, Martin ES, Hung KE (2011) The dual PI3K/mTOR inhibitor NVP-BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild-type colorectal cancer. PLoS ONE 6(9):e25132. https://doi.org/10.1371/journal.pone.0025132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carlo MI, Molina AM, Lakhman Y, Patil S, Woo K, DeLuca J, Lee C-H, Hsieh JJ, Feldman DR, Motzer RJ (2016) A phase Ib study of BEZ235, a dual inhibitor of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR), in patients with advanced renal cell carcinoma. Oncologist 21(7):787–788d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fazio N, Buzzoni R, Baudin E, Antonuzzo L, Hubner RA, Lahner H, De Herder WW, Raderer M, Teule A, Capdevila J (2016) A phase II study of BEZ235 in patients with everolimus-resistant, advanced pancreatic neuroendocrine tumours. Anticancer Res 36(2):713–719

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuntz S, Wenzel U, Daniel H (1999) Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. Eur J Nutr 38(3):133–142. https://doi.org/10.1007/s003940050054

    Article  CAS  PubMed  Google Scholar 

  51. Maksimović Ž, Maksimović M, Jadranin D, Kuzmanović I, Andonović O (2008) Medicamentous treatment of chronic venous insufficiency using semisynthetic diosmin: a prospective study. Acta Chir Iugosl 55(4):53–59

    Article  PubMed  Google Scholar 

  52. Diana G, Catanzaro M, Ferrara A, Ferrari P (2001) Activity of purified diosmin in the treatment of hemorrhoids. Altern Med Rev 6(2):212–212

    Google Scholar 

  53. Monograph D (2004) Monograph. Altern Med Rev 9(3):308–311

    Google Scholar 

  54. Alvarez N, Vicente V, Martinez C (2009) Synergistic effect of diosmin and interferon-α on metastatic pulmonary melanoma. Cancer Biother Radiopharm 24(3):347–352

    Article  CAS  PubMed  Google Scholar 

  55. Hnátek L (2015) Therapeutic potential of micronized purified flavonoid fraction (MPFF) of diosmin and hesperidin in treatment chronic venous disorder. Vnitr Lek 61(9):807–814

    PubMed  Google Scholar 

  56. Lewinska A, Siwak J, Rzeszutek I, Wnuk M (2015) Diosmin induces genotoxicity and apoptosis in DU145 prostate cancer cell line. Toxicol In Vitro 29(3):417–425

    Article  CAS  PubMed  Google Scholar 

  57. Martínez Conesa C, Vicente Ortega V, Yáñez Gascón MJ, Alcaraz Baños M, Canteras Jordana M, Benavente-García O, Castillo J (2005) Treatment of metastatic melanoma B16F10 by the flavonoids tangeretin, rutin, and diosmin. J Agric Food Chem 53(17):6791–6797

    Article  CAS  PubMed  Google Scholar 

  58. Suresh K (2014) Dose tolerance study of diosmin against 7,12-dimethylbenz a anthracene DMBA induced hamster buccal pouch carcinogenesis. Int J Pharm Biol Arch 5(1):82–89

    Google Scholar 

  59. Tanaka T, Makita H, Kawabata K, Mori H, Kakumoto M, Satoh K, Hara A, Sumida T, Tanaka T, Ogawa H (1997) Chemoprevention of azoxymethane-induced rat colon carcinogenesis by the naturally occurring flavonoids, diosmin and hesperidin. Carcinogenesis 18(5):957–965

    Article  CAS  PubMed  Google Scholar 

  60. Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Deregowska A, Wnuk M (2017) Diosmin-induced senescence, apoptosis and autophagy in breast cancer cells of different p53 status and ERK activity. Toxicol Lett 265:117–130

    Article  CAS  PubMed  Google Scholar 

  61. Dung TD, Day CH, Binh TV, Lin CH, Hsu HH, Su CC, Lin YM, Tsai FJ, Kuo WW, Chen LM, Huang CY (2012) PP2A mediates diosmin p53 activation to block HA22T cell proliferation and tumor growth in xenografted nude mice through PI3K-Akt-MDM2 signaling suppression. Food Chem Toxicol 50(5):1802–1810

    Article  CAS  PubMed  Google Scholar 

  62. Tahir M, Rehman MU, Lateef A, Khan AQ, Khan R, Qamar W, O’Hamiza O, Ali F, Hasan SK, Sultana S (2013) Diosmin abrogates chemically induced hepatocarcinogenesis via alleviation of oxidative stress, hyperproliferative and inflammatory markers in murine model. Toxicol Lett 220(3):205–218

    Article  CAS  PubMed  Google Scholar 

  63. Rajasekar M, Suresh K, Sivakumar K (2016) Diosmin induce apoptosis through modulation of STAT-3 signaling in 7, 12 dimethylbenz (a) anthracene induced harmster buccal pouch carcinogenesis. Biomed Pharmacother 83:1064–1070

    Article  CAS  PubMed  Google Scholar 

  64. Jiang D, Yang H, Willson JK, Liang J, Humphrey LE, Zborowska E, Wang D, Foster J, Fan R, Brattain MG (1998) Autocrine transforming growth factor α provides a growth advantage to malignant cells by facilitating re-entry into the cell cycle from suboptimal growth states. J Biol Chem 273(47):31471–31479

    Article  CAS  PubMed  Google Scholar 

  65. Awwad RA, Sergina N, Yang H, Ziober B, Willson JK, Zborowska E, Humphrey LE, Fan R, Ko TC, Brattain MG (2003) The role of transforming growth factor α in determining growth factor independence. Cancer Res 63(15):4731–4738

    CAS  PubMed  Google Scholar 

  66. Chowdhury S, Ongchin M, Sharratt E, Dominguez I, Wang J, Brattain MG, Rajput A (2013) Intra-tumoral heterogeneity in metastatic potential and survival signaling between iso-clonal HCT116 and HCT116b human colon carcinoma cell lines. PLoS ONE 8(4):e60299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Toda K, Kawada K, Iwamoto M, Inamoto S, Sasazuki T, Shirasawa S, Hasegawa S, Sakai Y (2016) Metabolic alterations caused by KRAS mutations in colorectal cancer contribute to cell adaptation to glutamine depletion by upregulation of asparagine synthetase. Neoplasia (New York, NY) 18(11):654–665

    Article  CAS  Google Scholar 

  68. Samuels Y, Diaz LA Jr, Schmidt-Kittler O, Cummins JM, DeLong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7(6):561–573

    Article  CAS  PubMed  Google Scholar 

  69. Davoodi H, Hashemi SR, Seow HF (2012) Increased NFκ-B activity in HCT116 colorectal cancer cell line harboring TLR4 Asp299Gly variant. Iran J Allergy Asthma Immunol 11:121–132

    CAS  PubMed  Google Scholar 

  70. Foucquier J, Guedj M (2015) Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 3(3):e00149

    Article  PubMed  PubMed Central  Google Scholar 

  71. Van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. In: Plumb JA (ed) Cancer cell culture. Springer, New York, pp 237–245

    Chapter  Google Scholar 

  72. Motawi TK, Darwish HA, Diab I, Helmy MW, Noureldin MH (2018) Combinatorial strategy of epigenetic and hormonal therapies: a novel promising approach for treating advanced prostate cancer. Life Sci 198:71–78

    Article  CAS  PubMed  Google Scholar 

  73. Abdallah FM, Helmy MW, Katary MA, Ghoneim AI (2018) Synergistic antiproliferative effects of curcumin and celecoxib in hepatocellular carcinoma HepG2 cells. Naunyn-Schmiedeberg's Arch Pharmacol 391(12):1399–1410

    Article  CAS  Google Scholar 

  74. Yang F, Qian X-J, Qin W, Deng R, Wu X-Q, Qin J, Feng G-K, Zhu X-F (2013) Dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 has a therapeutic potential and sensitizes cisplatin in nasopharyngeal carcinoma. PLoS ONE 8(3):e59879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chou T-C (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Can Res 70(2):440–446

    Article  CAS  Google Scholar 

  76. Peña-Morán O, Villarreal M, Álvarez-Berber L, Meneses-Acosta A, Rodríguez-López V (2016) Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var fagaroides on breast cancer cell lines. Molecules 21(8):1013

    Article  CAS  PubMed Central  Google Scholar 

  77. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  78. O'Kennedy R, Murphy C (2017) Immunoassays: development, applications and future trends. CRC Press, Boca Raton

    Book  Google Scholar 

  79. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376(6535):37

    Article  CAS  PubMed  Google Scholar 

  80. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  81. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science (New York, NY) 304(5670):554–554

    Article  CAS  Google Scholar 

  82. Johnson SM, Gulhati P, Rampy BA, Han Y, Rychahou PG, Doan HQ, Weiss HL, Evers BM (2010) Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer. J Am Coll Surg 210(5):767–776

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mirzoeva OK, Hann B, Hom YK, Debnath J, Aftab D, Shokat K, Korn WM (2011) Autophagy suppression promotes apoptotic cell death in response to inhibition of the PI3K—mTOR pathway in pancreatic adenocarcinoma. J Mol Med 89(9):877–889

    Article  CAS  PubMed  Google Scholar 

  84. Roy HK, Olusola BF, Clemens DL, Karolski WJ, Ratashak A, Lynch HT, Smyrk TC (2002) AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis 23(1):201–205

    Article  CAS  PubMed  Google Scholar 

  85. Butler DE, Marlein C, Walker HF, Frame FM, Mann VM, Simms MS, Davies BR, Collins AT, Maitland NJ (2017) Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget 8(34):56698–56713

    Article  PubMed  PubMed Central  Google Scholar 

  86. Herrera VA, Zeindl-Eberhart E, Jung A, Huber RM, Bergner A (2011) The dual PI3K/mTOR inhibitor BEZ235 is effective in lung cancer cell lines. Anticancer Res 31(3):849–854

    CAS  PubMed  Google Scholar 

  87. Chen J, Shao R, Li F, Monteiro M, Liu JP, Xu ZP, Gu W (2015) PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells. Clin Exp Pharmacol Physiol 42(12):1317–1326

    Article  CAS  PubMed  Google Scholar 

  88. Xin P, Li C, Zheng Y, Peng Q, Xiao H, Huang Y, Zhu X (2017) Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with imatinib mesylate against chronic myelogenous leukemia cell lines. Drug Des Dev Ther 11:1115

    Article  CAS  Google Scholar 

  89. Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT (2002) Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol Cell Biol 22(20):7004–7014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kelsoe J, Greenwood T, Akiskal H, Akiskal K (2012) The genetic basis of affective temperament and the bipolar spectrum. Int Clin Psychopharmacol 28:e5–e6

    Article  Google Scholar 

  92. Zinzalla V, Stracka D, Oppliger W, Hall MN (2011) Activation of mTORC2 by association with the ribosome. Cell 144(5):757–768. https://doi.org/10.1016/j.cell.2011.02.014

    Article  CAS  PubMed  Google Scholar 

  93. Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, Roux PP, Su B, Jacinto E (2010) mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 29(23):3939–3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li H, Jin X, Zhang Z, Xing Y, Kong X (2013) Inhibition of autophagy enhances apoptosis induced by the PI3K/AKT/mTor inhibitor NVP-BEZ235 in renal cell carcinoma cells. Cell Biochem Funct 31(5):427–433

    Article  CAS  PubMed  Google Scholar 

  95. Chang Z, Shi G, Jin J, Guo H, Guo X, Luo F, Song Y, Jia X (2013) Dual PI3K/mTOR inhibitor NVP-BEZ235-induced apoptosis of hepatocellular carcinoma cell lines is enhanced by inhibitors of autophagy. Int J Mol Med 31(6):1449–1456

    Article  CAS  PubMed  Google Scholar 

  96. Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71(10):1397–1421

    Article  CAS  PubMed  Google Scholar 

  97. Abdelmoneem MA, Mahmoud M, Zaky A, Helmy MW, Sallam M, Fang J-Y, Elkhodairy KA, Elzoghby AO (2018) Dual-targeted casein micelles as green nanomedicine for synergistic phytotherapy of hepatocellular carcinoma. J Control Release 287:78–93

    Article  CAS  PubMed  Google Scholar 

  98. Russo R, Chandradhara D, De Tommasi N (2018) Comparative bioavailability of two diosmin formulations after oral administration to healthy volunteers. Molecules 23(9):2174

    Article  CAS  PubMed Central  Google Scholar 

  99. Buddhan R, Manoharan S (2017) Diosmin reduces cell viability of A431 skin cancer cells through apoptotic induction. J Cancer Res Ther 13(3):471

    CAS  PubMed  Google Scholar 

  100. Patel S, Hurez V, Nawrocki ST, Goros M, Michalek J, Sarantopoulos J, Curiel T, Mahalingam D (2016) Vorinostat and hydroxychloroquine improve immunity and inhibit autophagy in metastatic colorectal cancer. Oncotarget 7(37):59087

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that this research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

MWH: Main research idea, experimental design, work supervision, data analysis and presentation, manuscript preparation and revision. AIG: Experimental design, sharing research ideas and work supervision, data analysis and presentation, and manuscript preparation and revision. MAK: Sharing ideas and work supervision, and manuscript preparation. RKE: Experimental design, sharing ideas, performance of the experiments, data analysis and presentation, manuscript preparation.

Corresponding author

Correspondence to Maged. W. Helmy.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The current research followed accepted principles of ethical and professional conduct according to approval reference number 1216PO3 issued by the Research Ethics Committee of the Faculty of Pharmacy, Damanhour University, regarding originality, risk control, and community service.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helmy, M.W., Ghoneim, A.I., Katary, M.A. et al. The synergistic anti-proliferative effect of the combination of diosmin and BEZ-235 (dactolisib) on the HCT-116 colorectal cancer cell line occurs through inhibition of the PI3K/Akt/mTOR/NF-κB axis. Mol Biol Rep 47, 2217–2230 (2020). https://doi.org/10.1007/s11033-020-05327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05327-4

Keywords

Navigation