Skip to main content
Log in

The identification of key candidate genes mediating yellow seedling lethality in a Lilium regale mutant

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Leaf color mutants are ideal materials for exploring plant photosynthesis mechanisms, chlorophyll biosynthetic pathways and chloroplast development. The yellow seedling lethal mutant lrysl1 was discovered from self-bred progenies of Lilium regale; however, the mechanism of leaf color mutation remains unclear. In this study, the ultrastructural and physiological features and de novo RNA-Seq data of a L. regale leaf color mutant and wild-type L. regale were investigated. Genetic analysis indicated that the characteristics of the lrysl1 mutant were controlled by a recessive nuclear gene. The chlorophyll a, chlorophyll b and carotenoid contents in the mutant leaves were lower than those in the wild-type leaves. Furthermore, the contents of the chlorophyll precursors aminolevulinic acid (ALA), porphobilinogen (PBG), protoporphyrin IX (ProtoIX), Mg-protoporphyrin IX (Mg-ProtoIX), and protochlorophyll (Pchl) decreased significantly in mutant leaves. Transcriptome data from the mutant and wild type showed that a total of 892 differentially expressed genes were obtained, of which 668 and 224 were upregulated genes and downregulated genes in the mutant, respectively. Almost all genes in the photosynthesis pathway and chlorophyll biosynthetic pathway were downregulated in the mutant, which corroborated the differences in the physiological features mentioned above. Further research indicated that the chloroplasts of the mutant leaves exhibited an abnormal morphology and distribution and that the expression of a gene related to chloroplast development was downregulated. It was concluded that abnormal chloroplast development was the main cause of leaf color mutation in the mutant lrysl1 and that LrGLK was a gene related to chloroplast development in L. regale. This research provides a foundation for further research on the mechanism by which LrGLK regulates chloroplast development in L. regale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Patocka J, Navratilova Z, Yokozawa T (2019) Bioactivity of Lilium candidum LA mini review. Biomed J Sci Tech Res 18(5):13859–13862. https://doi.org/10.26717/BJSTR.2019.18.003204

    Article  Google Scholar 

  2. Yuan SY, Ge L, Liu C, Ming J (2013) The development of EST-SSR markers in Lilium regale and their cross-amplification in related species. Euphytica 189(3):393–419. https://doi.org/10.1007/s10681-012-0788-8

    Article  CAS  Google Scholar 

  3. McRae EA (1998) Lilies: a guide for growers and collectors. Timber Press, Oregon

    Google Scholar 

  4. Wang SA, Wang P, Gao LL, Yang RT, Li LF, Zhang EL, Wang Q, Li Y, Yin ZF (2015) Characterization and complementation of a chlorophyll less dominant mutant GL1 in Lagerstroemia indica. DNA Cell Biol 36(5):354–366. https://doi.org/10.1089/dna.2016.3573

    Article  CAS  Google Scholar 

  5. Wang W, Zheng K, Gong X, Xu J, Huang J, Lin D, Dong Y (2017) The rice TCD11 encoding plastid ribosomal protein S6 is essential for chloroplast development at low temperature. Plant Sci 259:1–11. https://doi.org/10.1016/j.plantsci.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  6. Wang YQ, Shi JQ, Zhang T, Li Y, Zhang TQ, Zhang XL, Sang XC, Ling YH, He GH (2015) Characterization and candidate gene analysis of yellow-green leaf mutant ygl13 in rice (Oryza sativa). Sci Agric Sin 48(21):4197–4208

    CAS  Google Scholar 

  7. Zhang K, Liu ZY, Shan XF, Li CY, Tang XY, Chi MY, Feng H (2017) Physiological properties and chlorophyll biosynthesis in a Pak-choi (Brassica rapa L. ssp. chinensis) yellow leaf mutant, pylm. Acta Physiol Plant 39(1):22. https://doi.org/10.1007/s11738-016-2321-5

    Article  CAS  Google Scholar 

  8. Zhang L, Liu C, An X, Wu HY, Feng Y, Wang H, Sun DJ (2017) Identification and genetic mapping of a novel incompletely dominant yellow leaf color gene, Y1718, on chromosome 2BS in wheat. Euphytica 213(7):141. https://doi.org/10.1007/s10681-017-1894-4

    Article  CAS  Google Scholar 

  9. Ansari MJ, Al-Ghamdi A, Kumar R, Usmani S, Al-Attal Y, Nuru A, Mohamed AA, Singh K, Dhaliwal HS (2013) Characterization and gene mapping of a chlorophyll-deficient mutantclm1 of Triticum monococcum L. Biol Plant 57(3):442–448. https://doi.org/10.1007/s10535-013-0307-3

    Article  CAS  Google Scholar 

  10. Cao H, Li H, Miao Z, Fu G, Yang C, Wu L, Zhao P, Shan Q, Ruan J, Wang G, Wang J, Li S (2017) The preliminary study of leaf color mutant in Dendrobium officinale. Acta Agric Nucl Sin 31(3):461–471. https://doi.org/10.11869/j.issn.100-8551.2017.03.0461

    Article  Google Scholar 

  11. Deng L, Qin P, Liu Z, Wang G, Chen W, Tong J, Xiao L, Tu B, Sun Y, Yan W, He H, Tan J, Chen X, Wang Y, Li S, Ma B (2017) Characterization and fine-mapping of a novel premature leaf senescence mutant yellow leaf and dwarf 1 in rice. Plant Physiol Biochem 111:50–58. https://doi.org/10.1016/j.plaphy.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  12. Yang YX, Chen XX, Xu B, Li YX, Ma YH, Wang GD (2015) Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ’Sonate’. Front Plant Sci 6:139. https://doi.org/10.3389/fpls.2015.00139

    Article  PubMed  PubMed Central  Google Scholar 

  13. Afsar AM, Konzak CF, Rutger JN, Nilan RA (1980) Mutagenic effects of sodium azide in rice. Crop Sci 20(5):663–668. https://doi.org/10.2135/cropsci1980.0011183X002000050030x

    Article  Google Scholar 

  14. Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon tos17 insertion, tagging of a zeaxanthin epoxidase gene and a novel OsTATC Gene. Plant Physiol 125(3):1248–1257. https://doi.org/10.1111/j.1748-5827.2000.tb03179.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong H, Fei G, Wu C, Wu F, Sun Y, Chen M, Ren Y, Zhou K, Chen Z, Wang J, Jiang L, Zhang X, Guo X, Lei C, Su N, Wang H, Wan J (2013) A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol 162(4):1867–1880. https://doi.org/10.1104/pp.113.217604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong XM, Sun SF, Li FH, Wang J, Shi ZS (2015) Photosynthesis of a yellow-green mutant line in maize. Photosynthetica 53(4):499–505. https://doi.org/10.1007/s11099-015-0123-4

    Article  CAS  Google Scholar 

  17. Zhu GF, Yang FX, Shi SS, Li DM, Wang Z, Liu HL, Huang D, Wang CY (2015) Transcriptome characterization of cymbidium sinense 'Dharma' using 454 pyrosequencing and its application in the identification of genes associated with leaf color variation. PLoS ONE 10(6):e0128592. https://doi.org/10.1371/journal.pone.0128592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu ZH, Mo XJ, Jiang YL, Yu RP, Zhou XH, Tian M, Yang X, Gui M (2017) The preliminary study of chlorina mutant in Dendranthema morifolium. J Southwest For Coll 37(2):60–68. https://doi.org/10.11929/j.issn.2095-1914.2017.02.010

    Article  Google Scholar 

  19. Zhou S, Hu ZL, Zhu MK, Zhang B, Deng L, Pan Y, Chen GP (2013) Biochemical and molecular analysis of a temperature sensitive albino mutant in kale named ‘White Dove’. Plant Growth Regul 71(3):281–294. https://doi.org/10.1007/s10725-013-9829-0

    Article  CAS  Google Scholar 

  20. Li Y, Zhang ZY, Wang P, Wang SA, Ma LL, Li LF, Yang RT, Ma YZ, Wang Q (2015) Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant. Genes Genomics 37(10):851–863. https://doi.org/10.1007/s13258-015-0317-y

    Article  CAS  Google Scholar 

  21. Eckhardt U, Grimm B, Hörtensteiner S (2004) Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56(1):1–14. https://doi.org/10.1007/s11103-004-2331-3

    Article  CAS  PubMed  Google Scholar 

  22. Arnon DI (1949) Copper enzymes on isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15. https://doi.org/10.1104/pp.24.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dei M (1985) Benzyladenine induced stimulation of 5-aminolevulinic acid accumulationunder various light intensities in levulinic acid-treated cotyledons of etiolated cucumber. Physiol Plant 64(2):153–160. https://doi.org/10.1111/j.1399-3054.1985.tb02329.x

    Article  CAS  Google Scholar 

  24. Bogorad L (1962) Porphyrin synthesis. Methods Enzymol 5:885–895. https://doi.org/10.1111/j.1753-4887.1954.tb03310.x

    Article  CAS  Google Scholar 

  25. Hodgins RR, Huystee RBV (1986) Rapid simultaneous estimation of protoporphyrin and Mg-porphyrins in higher plants. J Plant Physiol 125(3):311–323. https://doi.org/10.1016/S0176-1617(86)80153-5

    Article  CAS  Google Scholar 

  26. Grabherr M, Haas B, Yassour M, Levin J, Thompson D, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644. https://doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. https://doi.org/10.1038/npre.2010.4282.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du W, Hu F, Yuan S, Liu C (2019) Selection of reference genes for quantitative real-time PCR analysis of photosynthesis-related genes expression in Lilium regale. Physiol Mol Biol Plants 25(6):1497–1506. https://doi.org/10.1007/s12298-019-00707-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Livak KJ, Schmittgen TD (2011) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001

    Article  Google Scholar 

  30. An XY, Liu C, Zhu CJ, Sun DJ, Feng Y, Zhang LL (2015) Evaluation and analysis of the main photosynthetic properties and agronomic characteristics of three xantha wheat NILs. J Triticeae Crops 35(11):1476–1482. https://doi.org/10.7606/j.issn.1009-1041.2015.11.02

    Article  CAS  Google Scholar 

  31. Ma X, Sun X, Li C, Huan R, Sun C, Wang Y, Xiao F, Wang Q, Chen P, Ma F, Zhang K, Wang P, Deng X (2017) Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa). Plant Physiol Biochem 111:1–9. https://doi.org/10.1016/j.plaphy.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  32. Feng BH, Yang Y, Shi YF, Lin L, Chen J, Huang QN, Wei YL, Hei L, Wu LL (2012) Genetic analysis and gene mapping of a light brown spotted leaf mutant in rice. Rice Sci 26(3):297–301

    CAS  Google Scholar 

  33. Cao L, Wang H, Sun DJ, Feng Y, Li XJ, Min DH (2008) Genetic analysis of a novel aurea mutant in wheat. Hereditas 30(12):1603–1607. https://doi.org/10.3724/SP.J.1005.2008.01603

    Article  PubMed  Google Scholar 

  34. Ma GR, Liu YB, Gai JY (1994) Discovery of a cytoplasmically inherited virescent mutant of soybean. Acta Agron Sin 20(3):334–338. https://doi.org/10.3321/j.issn:0496-3490.1994.03.014

    Article  Google Scholar 

  35. Hou DY, Xu H, Du GY, Lin JT, Duan M, Guo AG (2009) Proteome analysis of chloroplast proteins in stage albinism line of winter wheat (Triticum aestivum) FA85. BMB Rep 42(7):450. https://doi.org/10.5483/BMBRep.2009.42.7.450

    Article  CAS  PubMed  Google Scholar 

  36. Jiang Y, He Y, Fan SL, Yu JN, Song MZ (2011) The identification and analysis of RNA editing sites of 10 chloroplast protein-coding genes from virescent mutant of Gossypium hirsutum. Cotton Sci 23(1):3–9. https://doi.org/10.1007/s11606-010-1494-7

    Article  Google Scholar 

  37. La Rocca N, Rascio N, Oster U, Rüdiger W (2007) Inhibition of lycopene cyclase results in accumulation of chlorophyll precursors. Planta 225(4):1019–1029. https://doi.org/10.2307/23389588

    Article  PubMed  Google Scholar 

  38. Shao Q, Yu Z (2013) Physiological and biochemical characterization of a Xantha mutant of Cucumis melo L. Res J Biotechnol 8(5):72–77

    CAS  Google Scholar 

  39. Beale SI (2005) Green genes gleaned. Trends Plant Sci 10(7):309–312. https://doi.org/10.1016/j.tplants.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  40. Lv M, Liu HH, Mao HD, Zhao QR, Zhao HX, Hu SW (2010) Changes of chlorophyll synthesis metabolism in chlorophyll-deficient mutant in Brassica juncea. Acta Bot Boreali-Occident Sin 30(11):2177–2183. https://doi.org/10.3724/SP.J.1142.2010.40521

    Article  CAS  Google Scholar 

  41. Cao L, Wang H, Sun DJ, Feng Y, Li XJ, Min DH (2010) Chloroplast thylakoid protein composition and characteristics of chlorophyll biosynthesis in a novel aurea mutant of wheat. J Triticeae Crops 30(4):638–643. https://doi.org/10.1080/00949651003724790

    Article  CAS  Google Scholar 

  42. Yan F, Yang S, Wei J, Long Y, Jia R, Zhao X, Ge H (2019) Chloroplast ultrastructure, metabolite contents and gene expression involved in the pathway of chlorophyll biosynthesis of Rosa beggeriana ‘Aurea’. Acta Hortic Sin 46(11):2188–2200. https://doi.org/10.16420/j.issn.0513-353x.2019-0032

    Article  Google Scholar 

  43. Tian MS, Song MZ, Fan SL, Pang CY, Yu SX (2011) Advance in research of molecular mechanism of chlorophyll-deficient mutants in plants. Acta Bot Boreali-Occident Sin 31(9):1900–1907. https://doi.org/10.1631/jzus.B1000171

    Article  CAS  Google Scholar 

  44. Zhao Y, Wang ML, Li J, Zhang YZ (2003) Observation of the chloroplast in chlorophyll-reduced seedling mutant Cr3529. Brassica napus L. J Sichuan Univ 40(1):974–977. https://doi.org/10.1007/BF02974893

    Article  CAS  Google Scholar 

  45. Zhu XJ, Shang AQ, Yang MS, Yu XX (2014) Photosynthetic characteristics and leaf coloration mechanism of the next generation of golden Ulmus pumila. Acta Bot Boreali-Occident Sin 34(5):950–956. https://doi.org/10.7606/j.issn.1000-4025.2014.05.0950

    Article  CAS  Google Scholar 

  46. Robles P, Micol JL, Quesada V (2012) Arabidopsis MDA1, a nuclear-encoded protein, functions in chloroplast development and abiotic stress responses. PLoS ONE 7(8):e42924. https://doi.org/10.1371/journal.pone.0042924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA (2002) GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31(6):713–727. https://doi.org/10.1046/j.1365-313X.2002.01390.x

    Article  CAS  PubMed  Google Scholar 

  48. Llebers M, Chevalier F, Blanvillain R, Pfannschmidt T (2018) PAP genes are tissue-and cell-specific markers of chloroplast development. Planta 248(3):629–646. https://doi.org/10.1007/s00425-018-2924-8

    Article  CAS  Google Scholar 

  49. Gutiérrez-Nava MDLL, Gillmor CS, Jiménez LF, Guevara-García A, León P (2004) Chloroplast biogenesis genes act cell and noncell autonomously in early chloroplast development. Plant Physiol 135(1):471–482. https://doi.org/10.1104/pp.103.036996

    Article  Google Scholar 

  50. Ma HZ, Liu GQ, Li CW, Kang GZ, Guo TC (2012) Identification of the TaBTF3 gene in wheat (Triticum aestivum L.) and the effect of its silencing on wheat chloroplast, mitochondria and mesophyll cell development. Biochem Biophys Res Commun 426:608–614. https://doi.org/10.1016/j.bbrc.2012.08.137

    Article  CAS  PubMed  Google Scholar 

  51. Shi K, Gu J, Guo H, Zhao L, Xie Y, Xiong H, Li J, Zhao S, Song X, Liu L (2017) Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta. PLoS ONE. https://doi.org/10.1371/journal.pone.0177992

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Zhang J, Shi X, Peng Y, Li P, Lin D, Dong Y, Teng S (2016) Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures in rice. J Exp Bot 67(17):5187–5202. https://doi.org/10.1093/jxb/erw287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu L, Wu J, Liu Y, Gong X, Xu J, Lin D, Dong Y (2016) The rice pentatricopeptide repeat gene TCD10 is needed for chloroplast development under cold stress. Rice 9(1):67. https://doi.org/10.1186/s12284-016-0134-1

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zheng K, Zhao J, Lin D, Chen J, Xu J, Zhou H, Teng S, Dong Y (2016) The rice TCM5 gene encoding a novel deg protease protein is essential for chloroplast development under high temperatures. Rice 9(1):1–13. https://doi.org/10.1186/s12284-016-0086-5

    Article  CAS  Google Scholar 

  55. Chen M, Liu X, Jiang S, Wen B, Yang C, Xiao W, Fu X, Li D, Chen X, Gao D, Li L (2018) Transcriptomic and functional analyses reveal that PpGLK1 regulates chloroplast development in peach (Prunus persica). Front Plant Sci 9:34. https://doi.org/10.3389/fpls.2018.00034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nadakuduti SS, Holdsworth WL, Klein CL, Barry CS (2014) KNOX genes influence a gradient of fruit chloroplast development through regulation of GLK2 expression in tomato. Plant J 78:1022–1033. https://doi.org/10.1111/tpj.12529

    Article  CAS  PubMed  Google Scholar 

  57. Rossini L, Cribb L, Martin DJ, Langdale JA (2001) The maize golden 2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13(5):1231–1244. https://doi.org/10.2307/3871376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21(4):1109–1128. https://doi.org/10.1105/tpc.108.065250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2018-IVFCAAS), the National Center for Flower Improvement, and the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suxia Yuan or Chun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Hu, F., Yuan, S. et al. The identification of key candidate genes mediating yellow seedling lethality in a Lilium regale mutant. Mol Biol Rep 47, 2487–2499 (2020). https://doi.org/10.1007/s11033-020-05323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05323-8

Keywords

Navigation