Skip to main content

Advertisement

Log in

Combretastatin A-4 disodium phosphate and low dose gamma irradiation suppress hepatocellular carcinoma by downregulating ROCK1 and VEGF gene expression

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is a tough opponent. HCC contributes to 14.8% of all cancer mortality in Egypt. There are many choices for management of HCC; however tumor relapse has been reported in animal and clinical studies. This study was conducted to investigate the impact of low dose γ-irradiation (LDR) and combretastatin A-4 disodium phosphate (CA-4DP) on HCC recurrence. HCC was induced in male Wistar albino rats by oral administration of N-nitrosodiethylamine (NDEA) for 17 weeks. We evaluated the expression of the endothelial cell marker (CD31) by immunostaining. Expression of Rho Associated Coiled-Coil Containing Protein Kinase 1(ROCK1) and Vascular endothelial growth factor (VEGF) expression was assessed by real-time PCR after (6, 24 and 48 h). Our results showed that expression of CD31 and gene expression of ROCK1 and VEGF was significantly repressed at all-time intervals by combination therapy ofLDR and CA-4DP as compared with untreated NDEA/HCC group and NDEA/HCC groups treated with either LDR or CA-4DP alone, (P < 0.05). Our study demonstrated the additive effect of LDR in combination with CA-4DP in suppression of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Balogh J, Victor D, Asham EH, Burroughs SG, Boktour M, Saharia A, Li X, Ghobrial RM, Monsour HP (2016) Hepatocellular carcinoma: a review. J Hepatocell Carcinoma 3:41–53

    PubMed  PubMed Central  Google Scholar 

  2. Johnston MP, Khakoo SI (2019) Immunotherapy for hepatocellular carcinoma: current and future. World J Gastroenterol 24:2977–2989

    Google Scholar 

  3. Yapali S, Tozun N (2018) Epidemiology and viral risk factors for hepatocellular carcinoma in the Eastern Mediterranean countries. Hepatoma Res 4:24

    Google Scholar 

  4. Abdel-Wahab M, El-Ghawalby N, Mostafa M, Sultan A, El-Sadany M, Fathy O, Salah T, Ezzat F (2007) Epidemiology of hepatocellular carcinoma in lower Egypt.&amp;nbsp;Mansoura Gastroenterology Center. Hepato-gastroenterology 73:157–162

    Google Scholar 

  5. El-Serag HB (2001) Epidemiology of hepatocellular carcinoma. Clin Liver Dis 1:87–107

    Google Scholar 

  6. Hecht SS (1997) Approaches to cancer prevention based on an understanding of N-nitrosamine carcinogenesis. Proc Soc Exp Biol Med 2:181–191

    Google Scholar 

  7. Saenger W (1984) Physical properties of nucleotides: charge densities, pK values, spectra and tautomerism. Springer, New York, p 106

    Google Scholar 

  8. Verna L, Whysner J, Williams GM (1996) N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol Ther 1–2:57–81

    Google Scholar 

  9. Park YN, Kim YB, Yang KM, Park C (2000) Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med 124:1061–1065

    CAS  PubMed  Google Scholar 

  10. Holmes DI, Zachary I (2005) The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol 2:209

    Google Scholar 

  11. Pradeep CR, Sunila ES, Kuttan G (2005) Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies. Integr Cancer Ther 4:315–321

    CAS  PubMed  Google Scholar 

  12. Righi L, Deaglio S, Pecchioni C, Gregorini A, Horenstein AL, Bussolati G, Sapino A, Malavasi F (2003) Role of CD31/platelet endothelial cell adhesion molecule-1 expression in in vitro and in vivo growth and differentiation of human breast cancer cells. Am J Pathol 4:1163–1174

    Google Scholar 

  13. Stacchini A, Chiarle R, Antinoro V, Demurtas A, Novero D, Palestro G (2003) Expression of the CD31 antigen in normal B-cells and non-Hodgkin’s lymphomas. J Biol Regul Homeost Agents 4:308–315

    Google Scholar 

  14. Zhang YY, Kong LQ, Zhu XD, Cai H, Wang CH, Shi WK, Cao MQ, Li XL, Li KS, Zhang SZ, Chai ZT, Ao JY, Ye BG, Sun HC (2018) CD31 regulates metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma via the ITGB1-FAK-Akt signaling pathway. Cancer Lett 429:29–40

    CAS  PubMed  Google Scholar 

  15. Müller AM, Hermanns MI, Skrzynski C, Nesslinger M, Müller KM, Kirkpatrick CJ (2002) Expression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitro. Exp Mol Pathol 3:221–229

    Google Scholar 

  16. Morgan-Fisher M, Wewer UM, Yoneda A (2013) Regulation of ROCK activity in cancer. J Histochem Cytochem 3:185–198

    Google Scholar 

  17. Chin VT, Nagrial AM, Chou A, Biankin AV, Gill AJ, Timpson P, Pajic M (2015) Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities. Expert Rev Mol Med 17:e17

    PubMed  PubMed Central  Google Scholar 

  18. Lane J, Martin TA, Watkins G, Mansel RE, Jiang WG (2008) The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer. Int J Oncol 3:585–593

    Google Scholar 

  19. Xue F, Takahara T, Yata Y, Xia Q, Nonome K, Shinno E, Kanayama M, Takahara S, Sugiyama T (2008) Blockade of Rho/Rho-associated coiled coil-forming kinase signaling can prevent progression of hepatocellular carcinoma in matrix metalloproteinase-dependent manner. Hepatol Res 8:810–817

    Google Scholar 

  20. Li J, Bharadwaj SS, Guzman G, Vishnubhotla R, Glover SC (2015) ROCK I has more accurate prognostic value than MET in predicting patient survival in colorectal cancer. Anticancer Res 6:3267–3273

    Google Scholar 

  21. Zhang P, Lu Y, Liu XY, Zhou YH (2015) Knockdown of Rho-associated protein kinase 1 suppresses proliferation and invasion of glioma cells. Tumour Biol 1:421–428

    Google Scholar 

  22. Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia-Kendal D (1989) Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 2:209–211

    Google Scholar 

  23. Young SL, Chaplin DJ (2004) Combretastatin A4 phosphate: background and current clinical status. Expert Opin Investig Drugs 9:1171–1182

    Google Scholar 

  24. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    CAS  PubMed  Google Scholar 

  25. Chaplin D, Hill S (2002) The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Radiat Oncol Biol Phys 5:1491–1496

    Google Scholar 

  26. Galbraith SM, Maxwell RJ, Lodge MA, Tozer GM, Wilson J, Taylor NJ, Stirling JJ, Sena L, Padhani AR, Rustin GJ (2003) Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 15:2831–2842

    Google Scholar 

  27. Nelkin BD, Ball DW (2001) Combretastatin A-4 and doxorubicin combination treatment is effective in a preclinical model of human medullary thyroid carcinoma. Oncol Rep 8:157–160

    CAS  PubMed  Google Scholar 

  28. Murata R, Siemann DW, Overgaard J, Horsman MR (2001) Interaction between combretastatin A4 disodium phosphate and radiation in murine tumours. Radiother Oncol 60:155–161

    CAS  PubMed  Google Scholar 

  29. Zhou L, Zhang X, Li H, Niu C, Yu D, Yang G, Liang X, Wen X, Li M, Cui J (2018) Validating the pivotal role of the immune system in low-dose radiation-induced tumor inhibition in Lewis lung cancer-bearing mice. Cancer Med 4:1338–1348

    Google Scholar 

  30. Ren H, Shen J, Tomiyama-Miyaji C, Watanabe M, Kainuma E, Inoue M, Kuwano Y, Abo T (2006) Augmentation of innate immunity by low-dose irradiation. Cell Immunol 1:50–56

    Google Scholar 

  31. Kim CS, Kim JK, Nam SY, Yang KH, Jeong M, Kim HS, Kim CS, Jin YW, Kim J (2007) Low-dose radiation stimulates the proliferation of normal human lung fibroblasts via a transient activation of Raf and Akt. Mol Cells 3:424–430

    Google Scholar 

  32. Lin CC, Wang TE, Liu CY, Lin CP, Liu TP, Chen MJ, Chang WH, Lin JC, Chang KM, Chu CH, Shih SC, Chao KS, Chen YJ (2008) Potentiation of the immunotherapeutic effect of autologous dendritic cells by pretreating hepatocellular carcinoma with low-dose radiation. Clin Invest Med 3:E150–E159

    Google Scholar 

  33. Wang GJ, Cai L (2000) Induction of cell-proliferation hormesis and cell-survival adaptive response in mouse hematopoietic cells by whole-body low-dose radiation. Toxicol Sci 2:369–376

    Google Scholar 

  34. Sakai K, Hoshi Y, Nomura T, Oda T, Iwasaki T, Fujita K, Yamada T, Tanooka H (2003) Suppression of carcinogenic processes in mice by chronic low dose rate gamma-irradiation. Int J Low Radiat 1:142–146

    Google Scholar 

  35. Ina Y, Sakai K (2004) Prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice. Radiat Res 2:168–173

    Google Scholar 

  36. Hosoi Y, Sakamoto K (1993) Suppressive effect of low dose total body irradiation on lung metastasis: dose dependency and effective period. Radiother Oncol 2:177–179

    Google Scholar 

  37. Ju GZ, Liu SZ, Li XY, Liu WH, Fu HQ (1995) Effect of high versus low dose radiation on the immune system. In: Hagen U, Harder D, Jung H, Streffer C (eds) Radiation research 1895–1995. Proc of the Tenth Int Congress of Radiation Research, Würzburg

    Google Scholar 

  38. Cai L (1999) Research of the adaptive response induced by low-dose radiation: where have we been and where should we go? Hum ExpToxicol 7:419–425

    Google Scholar 

  39. Hashimoto S, Shirato H, Hosokawa M, Nishioka T, Kuramitsu Y, Matushita K, Kobayashi M, Miyasaka K (1999) The suppression of metastases and the change in host immune response after low-dose total-body irradiation in tumor-bearing rats. Radiat Res 6:717–724

    Google Scholar 

  40. Nowosielska EM, Cheda A, Wrembel-Wargocka J, Janiak MK (2008) Modulation of the growth of pulmonary tumour colonies in mice after single or fractionated low-level irradiations with X-rays. Nukleonika 1:S9–S15

    Google Scholar 

  41. Alghzzawy ZM, Elmaghraby TK, Hagag SA, Awwad MH (2019) Effect of vascular disrupting agent (CA-4DP) and ionizing radiation on tumor growth in rats. J Basic Env Sci 6:97–103

    CAS  Google Scholar 

  42. Darwish HA, El-Boghdady NA (2011) Possible involvement of oxidative stress in diethylnitrosamine induced hepatocarcinogenesis: chemopreventive effect of curcumin. J Food Biochem 37:353–361

    Google Scholar 

  43. Cheda A, Wrembel-Wargocka J, Lisiak E, Nowosielska EM, Marciniak M, Janiak MK (2004) Single low doses of X rays inhibit the development of experimental tumor metastases and trigger the activities of NK cells in mice. Radiat Res 3:335–340

    Google Scholar 

  44. Wang H, Sun X, Chen F, De Keyzer F, Yu J, Landuyt W, Vandecaveye V, Peeters R, Bosmans H, Hermans R, Marchal G, Ni Y (2009) Treatment of rodent liver tumor with combretastatin a4 phosphate: noninvasive therapeutic evaluation using multiparametric magnetic resonance imaging in correlation with microangiography and histology. Invest Radiol 1:44–53

    Google Scholar 

  45. Banchroft JD, Stevens A, Turner DR (1996) Theory and practice of histological techniques, 4th edn. Churchill Livingstone, New York

    Google Scholar 

  46. Wang D, Stockard CR, Harkins L, Lott P, Salih C, Yuan K, Buchsbaum D, Hashim A, Zayzafoon M, Hardy RW, Hameed O, Grizzle W, Siegal GP (2008) Immunohistochemistry in the evaluation of neovascularization in tumor xenografts. Biotech Histochem 3–4:179–189

    Google Scholar 

  47. Chomczynski PA (1993) Reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 3:532–534

    Google Scholar 

  48. Chen J, Li Q, Dong R, Gao H, Peng H, Wu Y (2014) The effect of the Ras homolog gene family (Rho), member A/Rho associated coiled-coil forming protein kinase pathway in atrial fibrosis of type 2 diabetes in rats. Exp Ther Med 3:836–840

    Google Scholar 

  49. Gómez R, Simón C, Remohí J, Pellicer A (2002) Vascular endothelial growth factor receptor-2 activation induces vascular permeability in hyperstimulated rats, and this effect is prevented by receptor blockade. Endocrinology 11:4339–4348

    Google Scholar 

  50. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative pcr and the 2–∆∆ct method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  51. Abe H, Kamai T, Tsujii T, Nakamura F, Mashidori T, Mizuno T, Tanaka M, Tatsumiya K, Furuya N, Masuda A, Yamanishi T, Yoshida K (2008) Possible role of the RhoC/ ROCK pathway in progression of clear cell renal cell carcinoma. Biomed Res 3:155–161

    Google Scholar 

  52. Gilkes DM, Xiang L, Lee SJ, Chaturvedi P, Hubbi ME, Wirtz D, Semenza GL (2014) Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc Natl Acad Sci USA 3:E384–E393

    Google Scholar 

  53. Benitah SA, Valerón PF, van Aelst L, Marshall CJ, Lacal JC (2004) Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta 1705:121–132

    CAS  PubMed  Google Scholar 

  54. Ellenbroek SI, Collard JG (2007) Rho GTPases: functions and association with cancer. Clin Exp Metastasis 8:657–672

    Google Scholar 

  55. Ma W, Wong CC, Tung EK, Wong CM, Ng IO (2013) RhoE is frequently down-regulated in hepatocellular carcinoma (HCC) and suppresses HCC invasion through antagonizing the Rho/Rho-kinase/myosin phosphatase target pathway. Hepatology 1:152–161

    Google Scholar 

  56. Liu H, Li W, Chen C, Pei Y, Long X (2015) MiR-335 acts as a potential tumor suppressor miRNA via downregulating ROCK1 expression in hepatocellular carcinoma. Tumour Biol 8:6313–6319

    Google Scholar 

  57. Ding W, Tan H, Zhao C, Li X, Li Z, Jiang C, Zhang Y, Wang L (2016) MiR-145 suppresses cell proliferation and motility by inhibiting ROCK1 in hepatocellular carcinoma. Tumour Biol 5:6255–6260

    Google Scholar 

  58. Pajonk F, McBride WH (2001) Ionizing radiation affects 26 s proteasome function and associated molecular responses, even at low doses. Radiother Oncol 2:203–212

    Google Scholar 

  59. Chen W, Xu X, Bai L, Padilla MT, Gott KM, Leng S, Tellez CS, Wilder JA, Belinsky SA, Scott BR, Lin Y (2012) Low-dose gamma-irradiation inhibits IL-6 secretion from human lung fibroblasts that promotes bronchial epithelial cell transformation by cigarette-smoke carcinogen. Carcinogenesis 7:1368–1374

    Google Scholar 

  60. Slinger E, Maussang D, Schreiber A, Siderius M, Rahbar A, Fraile-Ramos A, Lira SA, Söderberg-Nauclér C, Smit MJ (2010) HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis. Sci Signal 133:ra58

    Google Scholar 

  61. Sanz-Moreno V, Gaggioli C, Yeo M, Albrengues J, Wallberg F, Viros A, Hooper S, Mitter R, Féral CC, Cook M, Larkin J, Marais R, Meneguzzi G, Sahai E, Marshall CJ (2011) ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell 2:229–245

    Google Scholar 

  62. Wang Y, van Boxel-Dezaire AH, Cheon H, Yang J, Stark GR (2013) STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc Natl Acad Sci USA 42:16975–16980

    Google Scholar 

  63. Wilson GS, Tian A, Hebbard L, Duan W, George J, Li X, Qiao L (2013) Tumoricidal effects of the JAK inhibitor Ruxolitinib (INC424) on hepatocellular carcinoma in vitro. Cancer Lett 2:224–230

    Google Scholar 

  64. Mohan CD, Bharathkumar H, Bulusu KC, Pandey V, Rangappa S, Fuchs JE, Shanmugam MK, Dai X, Li F, Deivasigamani A, Hui KM, Kumar AP, Lobie PE, Bender A, Basappa, Sethi G, Rangappa KS (2014) Development of a novel azaspirane that targets the Janus kinase-signal transducer and activator of transcription (STAT) pathway in hepatocellular carcinoma in vitro and in vivo. J Biol Chem 49:34296–34307

    Google Scholar 

  65. Poon RT, Lau CP, Cheung ST, Yu WC, Fan ST (2003) Quantitative correlation of serum levels and tumor expression of vascular endothelial growth factor in patients with hepatocellular carcinoma. Cancer Res 12:3121–3126

    Google Scholar 

  66. Choi SB, Han HJ, Kim WB, Song TJ, Choi SY (2017) VEGF overexpression predicts poor survival in hepatocellular carcinoma. Open Med 12:430–439

    CAS  Google Scholar 

  67. Torimura T, Ueno T, Kin M, Harada R, Taniguchi E, Nakamura T, Sakata R, Hashimoto O, Sakamoto M, Kumashiro R, Sata M, Nakashima O, Yano H, Kojiro M (2004) Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma. J Hepatol 5:799–807

    Google Scholar 

  68. Yasuda S, Arii S, Mori A, Isobe N, Yang W, Oe H, Fujimoto A, Yonenaga Y, Sakashita H, Imamura M (2004) Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 alpha and its significance. J Hepatol 1:117–123

    Google Scholar 

  69. Lavarone M, Lampertico P, Iannuzzi F, Manenti E, Donato MF, Arosio E, Bertolini F, Primignani M, Sangiovanni A, Colombo M (2007) Increased expression of vascular endothelial growth factor in small hepatocellular carcinoma. J Viral Hepat 14:133–139

    Google Scholar 

  70. Su M, Huang J, Liu S, Xiao Y, Qin X, Liu J, Pi C, Luo T, Li J, Chen X, Luo Z (2016) The anti-angiogenic effect and novel mechanisms of action of Combretastatin A-4. Sci Rep 6:28139

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang J, Lu A, Beech D, Jiang B, Lu Y (2007) Suppression of breast cancer metastasis through the inhibition of VEGF-mediated tumor angiogenesis. Cancer Ther 5:273–286

    PubMed  PubMed Central  Google Scholar 

  72. Wang S, Liu H, Ren L, Pan Y, Zhang Y (2008) Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference. Neoplasia 4:399–409

    CAS  Google Scholar 

  73. Zou Y, Guo CG, Zhang MM (2015) Inhibition of human hepatocellular carcinoma tumor angiogenesis by siRNA silencing of VEGF via hepatic artery perfusion. Eur Rev Med Pharmacol Sci 24:4751–4761

    Google Scholar 

  74. Bancroft CC, Chen Z, Dong G, Sunwoo JB, Yeh N, Park C, Van Waes C (2001) Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF- κB signal pathways. Clin Cancer Res 7:435–442

    CAS  PubMed  Google Scholar 

  75. Huang S, Robinson JB, Deguzman A, Bucana CD, Fidler IJ (2000) Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin-8. Cancer Res 1:5334–5339

    Google Scholar 

  76. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ (2001) Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 31:4188–4197

    Google Scholar 

  77. Zhao L, Xu G, Zhou J, Xing H, Wang S, Wu M, Lu YP, Ma D (2006) The effect of RhoA on human umbilical vein endothelial cell migration and angiogenesis in vitro. Oncol Rep 5:1147–1152

    Google Scholar 

  78. Strilić B, Kucera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S, Dejana E, Ferrara N, Lammert E (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 4:505–515

    Google Scholar 

  79. van der Meel R, Symons MH, Kudernatsch R, Kok RJ, Schiffelers RM, Storm G, Gallagher WM, Byrne AT (2011) The VEGF/Rho GTPasesignalling pathway: a promising target for anti-angiogenic/anti-invasion therapy. Drug Discov Today 5–6:219–228

    Google Scholar 

  80. Dangerfield J, Larbi KY, Huang MT, Dewar A, Nourshargh S (2002) PECAM-1 (CD31) homophilic interaction up-regulates alpha6beta1 on transmigrated neutrophils in vivo and plays a functional role in the ability of alpha6 integrins to mediate leukocyte migration through the perivascular basement membrane. J Exp Med 9:1201–1211

    Google Scholar 

  81. Charpin C, Dales JP, Garcia S, Carpentier S, Djemli A, Andrac L, Lavaut MN, Allasia C, Bonnier P (2004) Tumor neoangiogenesis by CD31 and CD105 expression evaluation in breast carcinoma tissue microarrays. Clin Cancer Res 10(17):5815–5819

    CAS  PubMed  Google Scholar 

  82. Fitzgibbons PL, Dillon DA, Alsabeh R, Berman MA, Hayes DF, Hicks DG, Hughes KS, Nofech-Mozes S (2014) Template for reporting results of biomarker testing of specimens from patients with carcinoma of the breast. Arch Pathol Lab Med 5:595–601

    Google Scholar 

  83. Obuchowski NA (2004) How many observers are needed in clinical studies of medical imaging? AJR Am J Roentgenol 4:867–869

    Google Scholar 

  84. Wang JY, Xu XY, Jia JH, Wu CH, Ge RW (2010) Expressions of SE-1, CD31 and CD105 in the vascular endothelial cells and serum of rat with hepatocellular carcinoma. Chin Med J 6:730–733

    Google Scholar 

  85. Srivastava S, Wong KF, Ong CW, Huak CY, Yeoh KG, Teh M, Luk JM, Salto-Tellez M (2012) A morpho-molecular prognostic model for hepatocellular carcinoma. Br J Cancer 2:334–339

    Google Scholar 

  86. Sapino A, Bongiovanni M, Cassoni P, Righi L, Arisio R, Deaglio S, Malavasi F (2001) Expression of CD31 by cells of extensive ductal in situ and invasive carcinomas of the breast. J Pathol 2:254–261

    Google Scholar 

  87. Croft DR, Sahai E, Mavria G, Li S, Tsai J, Lee WM, Marshall CJ, Olson MF (2004) Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res 64:8994–9001

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr Adel M. Bakeer Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, and Dr Osama M. Mostafa Lecturer of Pathology, Faculty of Medicine, Al-Azhar University, Egypt for their input in this work.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Khaled Elmaghraby.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghzzawy, Z.M., Elmaghraby, T.K., El-Hamid Hagag, S.A. et al. Combretastatin A-4 disodium phosphate and low dose gamma irradiation suppress hepatocellular carcinoma by downregulating ROCK1 and VEGF gene expression. Mol Biol Rep 47, 1883–1893 (2020). https://doi.org/10.1007/s11033-020-05282-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05282-0

Keywords

Navigation