Skip to main content
Log in

Association of AHSG gene polymorphisms with serum Fetuin-A levels in individuals with cardiovascular calcification in west of Iran

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fetuin-A (AHSG) is a multifunctional secretory protein and acts as an ectopic valve and artery calcification inhibitor. We assessed the correlation between serum levels of Fetuin-A and both exon 6 (248 C/T) and exon 7 (256 C/G) mutations in patients with coronary artery calcification (CAC), mitral annular calcification (MAC), and aortic valve calcification (AVC). 184 patients and 184 healthy individuals as control group were included. The genetic variants of rs4917 and rs4918 for the AHSG gene were determined by PCR-RFLP and T-ARMS PCR techniques. Fetuin-A levels, fasting blood sugar (FBS), urea, creatinine, calcium phosphorus, and lipid profile were measured. Fetuin-A levels were remarkedly lower in individuals with AVC, MAC, and CAC comparing to the control group (p < 0.001). The CT + TT genotypes and the T allele (AHSG Thr248Met) were associated with the risk of calcification of heart valves and coronary artery by 1.31 and 1.27 times in the patient group, respectively. The frequency of CT genotype and T allele was considerably higher in the patient group comparing to the control group. Patients with T allele (CT + TT) had higher levels of FBS, urea, low-density lipoproteins (LDL)-C, phosphorus, systolic blood pressure (SBP), diastolic blood pressure (DBP) while decreased levels of triglyceride, high-density lipoproteins (HDL)-C, calcium and fetuin-A in comparison to control group. Additionally, there was a positive correlation between serum FBS, urea, creatinine, HDL-C, calcium with fetuin-A, and a negative correlation between phosphorous level, SBP, and DBP with fetuin-A. T allele in rs4917 Single nucleotide polymorphism (SNP) is the risk allele of calcification of heart valves and coronary arteries and fetuin-A levels correlates negatively with the occurrence of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AHSG:

α2-Heremance-Schmid –glycoprotein

AVC:

Aortic valve calcification

BMI:

Body mass index

CAC:

Coronary artery calcification

CPPs:

Calciprotein particles

DBP:

Diastolic blood pressure

FBS:

Fasting blood sugar

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

MAC:

Mitral annular calcification

PCR:

Polymerase chain reaction

RFLP:

Restriction fragment length polymorphism

SBP:

Systolic blood pressure

SNP:

Single nucleotide polymorphism

TG:

Triglyceride

WT:

Wild type

References

  1. Madhavan MV, Tarigopula M, Mintz GS, Maehara A, Stone GW, Genereux P (2014) Coronary artery calcification: pathogenesis and prognostic implications. J Am Coll Cardiol 63(17):1703–1714. https://doi.org/10.1016/j.jacc.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  2. Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW (2017) Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc Imaging 10(5):582–593. https://doi.org/10.1016/j.jcmg.2017.03.005

    Article  PubMed  Google Scholar 

  3. Mori H, Torii S, Kutyna M, Sakamoto A, Finn AV, Virmani R (2018) Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging 11(1):127–142. https://doi.org/10.1016/j.jcmg.2017.10.012

    Article  PubMed  Google Scholar 

  4. Liu W, Zhang Y, Yu CM, Ji QW, Cai M, Zhao YX, Zhou YJ (2015) Current understanding of coronary artery calcification. J Geriatr Cardiol 12(6):668–675. https://doi.org/10.11909/j.issn.1671-5411.2015.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abramowitz Y, Jilaihawi H, Chakravarty T, Mack MJ, Makkar RR (2015) Mitral annulus calcification. J Am Coll Cardiol 66(17):1934–1941. https://doi.org/10.1016/j.jacc.2015.08.872

    Article  Google Scholar 

  6. Freeman RV, Otto CM (2005) Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111(24):3316–3326. https://doi.org/10.1161/circulationaha.104.486738

    Article  PubMed  Google Scholar 

  7. Kaden JJ, Reinohl JO, Blesch B, Brueckmann M, Haghi D, Borggrefe M, Schmitz F, Klomfass S, Pillich M, Ortlepp JR (2007) Systemic and local levels of fetuin-A in calcific aortic valve stenosis. Int J Mol Med 20(2):193–197

    CAS  PubMed  Google Scholar 

  8. Koos R, Brandenburg V, Mahnken AH, Muhlenbruch G, Stanzel S, Gunther RW, Floege J, Jahnen-Dechent W, Kelm M, Kuhl HP (2009) Association of fetuin-A levels with the progression of aortic valve calcification in non-dialyzed patients. Eur Heart J 30(16):2054–2061. https://doi.org/10.1093/eurheartj/ehp158

    Article  CAS  PubMed  Google Scholar 

  9. Dweck MR, Boon NA, Newby DE (2012) Calcific aortic stenosis: a disease of the valve and the myocardium. J Am Coll Cardiol 60(19):1854–1863. https://doi.org/10.1016/j.jacc.2012.02.093

    Article  PubMed  Google Scholar 

  10. Afsar CU, Uzun H, Yurdakul S, Muderrisoglu C, Erguney M, Demir B, Aslan A, Aral H, Ozyazgan S (2012) Association of serum fetuin-A levels with heart valve calcification and other biomarkers of inflammation among persons with acute coronary syndrome. Clin Invest Med 35(4):E206–215

    Article  CAS  Google Scholar 

  11. Ix JH, Chertow GM, Shlipak MG, Brandenburg VM, Ketteler M, Whooley MA (2007) Association of fetuin-A with mitral annular calcification and aortic stenosis among persons with coronary heart disease: data from the Heart and Soul Study. Circulation 115(19):2533–2539. https://doi.org/10.1161/circulationaha.106.682450

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kubota N, Testuz A, Boutten A, Robert T, Codogno I, Duval X, Tubiana S, Hekimian G, Arangalage D, Cimadevilla C, Kerneis C, Vahanian A, Messika-Zeitoun D (2018) Impact of fetuin-A on progression of calcific aortic valve stenosis—the COFRASA—GENERAC study. Int J Cardiol 265:52–57. https://doi.org/10.1016/j.ijcard.2018.03.070

    Article  PubMed  Google Scholar 

  13. Ix JH, Katz R, de Boer IH, Kestenbaum BR, Peralta CA, Jenny NS, Budoff M, Allison MA, Criqui MH, Siscovick D, Shlipak MG (2012) Fetuin-A is inversely associated with coronary artery calcification in community-living persons: the multi-ethnic study of atherosclerosis. Clin Chem 58(5):887–895. https://doi.org/10.1373/clinchem.2011.177725

    Article  CAS  PubMed  Google Scholar 

  14. Mori K, Emoto M, Inaba M (2011) Fetuin-A: a multifunctional protein. Recent Pat Endocr, Metab Immune Drug Discovery 5(2):124–146

    Article  CAS  Google Scholar 

  15. Laughlin GA, Cummins KM, Wassel CL, Daniels LB, Ix JH (2012) The association of Fetuin-A with cardiovascular disease mortality in older community-dwelling adults: the Rancho Bernardo study. J Am Coll Cardiol 59(19):1688–1696. https://doi.org/10.1016/j.jacc.2012.01.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carracedo M, Back M (2018) Fetuin A in aortic stenosis and valve calcification: not crystal clear. Int J Cardiol 265:77–78. https://doi.org/10.1016/j.ijcard.2018.04.115

    Article  PubMed  Google Scholar 

  17. Makulska I, Szczepanska M, Drozdz D, Polak-Jonkisz D, Zwolinska D (2019) The importance of fetuin-A in vascular calcification in children with chronic kidney disease. Adv Clin Exp Med 28(4):499–505. https://doi.org/10.17219/acem/82517

    Article  PubMed  Google Scholar 

  18. Jahnen-Dechent W, Heiss A, Schafer C, Ketteler M (2011) Fetuin-A regulation of calcified matrix metabolism. Circ Res 108(12):1494–1509. https://doi.org/10.1161/circresaha.110.234260

    Article  CAS  PubMed  Google Scholar 

  19. Siddiq A, Lepretre F, Hercberg S, Froguel P, Gibson F (2005) A synonymous coding polymorphism in the alpha2-Heremans-schmid glycoprotein gene is associated with type 2 diabetes in French Caucasians. Diabetes 54(8):2477–2481. https://doi.org/10.2337/diabetes.54.8.2477

    Article  CAS  PubMed  Google Scholar 

  20. Weikert C, Stefan N, Schulze MB, Pischon T, Berger K, Joost HG, Haring HU, Boeing H, Fritsche A (2008) Plasma fetuin-A levels and the risk of myocardial infarction and ischemic stroke. Circulation 118(24):2555–2562. https://doi.org/10.1161/circulationaha.108.814418

    Article  CAS  PubMed  Google Scholar 

  21. Stenvinkel P, Wang K, Qureshi AR, Axelsson J, Pecoits-Filho R, Gao P, Barany P, Lindholm B, Jogestrand T, Heimburger O, Holmes C, Schalling M, Nordfors L (2005) Low fetuin-A levels are associated with cardiovascular death: impact of variations in the gene encoding fetuin. Kidney Int 67(6):2383–2392. https://doi.org/10.1111/j.1523-1755.2005.00345.x

    Article  CAS  PubMed  Google Scholar 

  22. Osawa M, Yuasa I, Kitano T, Henke J, Kaneko M, Udono T, Saitou N, Umetsu K (2001) Haplotype analysis of the human alpha2-HS glycoprotein (fetuin) gene. Ann Hum Genet 65(Pt 1):27–34

    Article  CAS  Google Scholar 

  23. Fisher E, Stefan N, Saar K, Drogan D, Schulze MB, Fritsche A, Joost HG, Haring HU, Hubner N, Boeing H, Weikert C (2009) Association of AHSG gene polymorphisms with fetuin-A plasma levels and cardiovascular diseases in the EPIC-Potsdam study. Circ Cardiovasc Genet 2(6):607–613. https://doi.org/10.1161/circgenetics.109.870410

    Article  CAS  PubMed  Google Scholar 

  24. Grimard BH, Safford RE, Burns EL (2016) Aortic stenosis: diagnosis and treatment. Am Fam Physician 93(5):371–378

    PubMed  Google Scholar 

  25. Gill EA, Pittenger B, Otto CM (2003) Evaluation of the severity of valvular heart disease and timing of surgery. Rev Esp Cardiol 56(9):900–914

    Article  Google Scholar 

  26. Mori K, Ikari Y, Jono S, Emoto M, Shioi A, Koyama H, Shoji T, Ishimura E, Inaba M, Hara K, Nishizawa Y (2010) Fetuin-A is associated with calcified coronary artery disease. Coron Artery Dis 21(5):281–285. https://doi.org/10.1097/MCA.0b013e32832fe5d5

    Article  PubMed  Google Scholar 

  27. Chacon-Cortes D, Griffiths L (2014) Methods for extracting genomic DNA from whole blood samples: current perspectives. https://doi.org/10.2147/BSAM.S46573

  28. Bellia C, Agnello L, Lo Sasso B, Milano S, Bivona G, Scazzone C, Pivetti A, Novo G, Palermo C, Bonomo V, La Grutta L, Midiri M, Novo S, Ciaccio M (2016) Fetuin-A is associated to serum calcium and AHSG T256S genotype but not to coronary artery calcification. Biochem Genet 54(3):222–231. https://doi.org/10.1007/s10528-016-9714-4

    Article  CAS  PubMed  Google Scholar 

  29. Mikami S, Hamano T, Fujii N, Nagasawa Y, Isaka Y, Moriyama T, Matsuhisa M, Ito T, Imai E, Hori M (2008) Serum osteoprotegerin as a screening tool for coronary artery calcification score in diabetic pre-dialysis patients. Hypertens Res 31(6):1163–1170. https://doi.org/10.1291/hypres.31.1163

    Article  CAS  PubMed  Google Scholar 

  30. Mehrotra R, Westenfeld R, Christenson P, Budoff M, Ipp E, Takasu J, Gupta A, Norris K, Ketteler M, Adler S (2005) Serum fetuin-A in nondialyzed patients with diabetic nephropathy: relationship with coronary artery calcification. Kidney Int 67(3):1070–1077. https://doi.org/10.1111/j.1523-1755.2005.00172.x

    Article  CAS  PubMed  Google Scholar 

  31. Kocyigit I, Unal A, Elcik D, Korkar H, Sen A, Yasan M, Eroglu E, Sipahioglu MH, Tokgoz B, Oymak O (2015) Association between cardiac valvular calcification and serum Fetuin-A levels in renal transplant recipients. Transplant Proc 47(5):1398–1401. https://doi.org/10.1016/j.transproceed.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  32. Reynolds JL, Skepper JN, McNair R, Kasama T, Gupta K, Weissberg PL, Jahnen-Dechent W, Shanahan CM (2005) Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol 16(10):2920–2930. https://doi.org/10.1681/asn.2004100895

    Article  CAS  PubMed  Google Scholar 

  33. Westenfeld R, Jahnen-Dechent W, Ketteler M (2007) Vascular calcification and fetuin-A deficiency in chronic kidney disease. Trends Cardiovasc Med 17(4):124–128. https://doi.org/10.1016/j.tcm.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  34. Fiore CE, Celotta G, Politi GG, Di Pino L, Castelli Z, Mangiafico RA, Signorelli SS, Pennisi P (2007) Association of high alpha2-Heremans-Schmid glycoprotein/fetuin concentration in serum and intima-media thickness in patients with atherosclerotic vascular disease and low bone mass. Atherosclerosis 195(1):110–115. https://doi.org/10.1016/j.atherosclerosis.2006.08.052

    Article  CAS  PubMed  Google Scholar 

  35. Hennige AM, Staiger H, Wicke C, Machicao F, Fritsche A, Haring HU, Stefan N (2008) Fetuin-A induces cytokine expression and suppresses adiponectin production. PLoS ONE 3(3):e1765. https://doi.org/10.1371/journal.pone.0001765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coker-Gurkan A, Coskun D, Arisan ED, Obakan P, Soylu O, Unsal NP (2015) Fetuin-A 742 (C/T) and 766 (C/G) polymorphic sites are associated with increased risk of myocardial infarction in older patients (%3e/= 40 years of age). Mol Med Rep 12(1):1356–1362. https://doi.org/10.3892/mmr.2015.3521

    Article  CAS  PubMed  Google Scholar 

  37. Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Muller-Esterl W, Schinke T, Jahnen-Dechent W (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Investig 112(3):357–366. https://doi.org/10.1172/jci17202

    Article  PubMed  Google Scholar 

  38. Merx MW, Schafer C, Westenfeld R, Brandenburg V, Hidajat S, Weber C, Ketteler M, Jahnen-Dechent W (2005) Myocardial stiffness, cardiac remodeling, and diastolic dysfunction in calcification-prone fetuin-A-deficient mice. J Am Soc Nephrol 16(11):3357–3364. https://doi.org/10.1681/asn.2005040365

    Article  CAS  PubMed  Google Scholar 

  39. Tuttolomondo A, Di Raimondo D, Di Sciacca R, Casuccio A, Bivona G, Bellia C, Barreca L, Serio A, D'Aguanno G, Ciaccio M, Licata G, Pinto A (2010) Fetuin-A and CD40 L plasma levels in acute ischemic stroke: differences in relation to TOAST subtype and correlation with clinical and laboratory variables. Atherosclerosis 208(1):290–296. https://doi.org/10.1016/j.atherosclerosis.2009.07.032

    Article  CAS  PubMed  Google Scholar 

  40. Maharem D, Gomaa S, K. El Ghandor M, Mohamed E, Matrawy K, Zaytoon S, Nomeir H (2013) Association of serum fetuin-A and fetuin-A gene polymorphism in relation to mineral and bone disorders in patients with chronic kidney disease. https://doi.org/10.1016/j.ejmhg.2013.07.003

  41. Laugsand LE, Ix JH, Bartz TM, Djousse L, Kizer JR, Tracy RP, Dehghan A, Rexrode K, Lopez OL, Rimm EB, Siscovick DS, O'Donnell CJ, Newman A, Mukamal KJ, Jensen MK (2015) Fetuin-A and risk of coronary heart disease: a Mendelian randomization analysis and a pooled analysis of AHSG genetic variants in 7 prospective studies. Atherosclerosis 243(1):44–52. https://doi.org/10.1016/j.atherosclerosis.2015.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Verduijn M, Prein RA, Stenvinkel P, Carrero JJ, le Cessie S, Witasp A, Nordfors L, Krediet RT, Boeschoten EW, Dekker FW (2011) Is fetuin-A a mortality risk factor in dialysis patients or a mere risk marker? A Mendelian randomization approach. Nephrol Dial Transplant 26(1):239–245. https://doi.org/10.1093/ndt/gfq402

    Article  CAS  PubMed  Google Scholar 

  43. Axelsson J, Wang X, Ketteler M, Qureshi AR, Heimburger O, Barany P, Lindholm B, Nordfors L, Stenvinkel P (2008) Is fetuin-A/alpha2-Heremans-Schmid glycoprotein associated with the metabolic syndrome in patients with chronic kidney disease? Am J Nephrol 28(4):669–676. https://doi.org/10.1159/000121358

    Article  CAS  PubMed  Google Scholar 

  44. Mirbolouk M, Kianoush S, Dardari Z, Miedema MD, Shaw LJ, Rumberger JA, Berman DS, Budoff MJ, Rozanski A, Al-Mallah MH, McEvoy JW, Nasir K, Blaha MJ (2019) The association of coronary artery calcium score and mortality risk among smokers: the coronary artery calcium consortium. Atherosclerosis. https://doi.org/10.1016/j.atherosclerosis.2019.12.014

    Article  PubMed  Google Scholar 

  45. Mancio J, Barros AS, Conceicao G, Pessoa-Amorim G, Santa C, Bartosch C, Ferreira W, Carvalho M, Ferreira N, Vouga L, Miranda IM, Vitorino R, Manadas B, Falcao-Pires I, Ribeiro VG, Leite-Moreira A, Bettencourt N (2020) Epicardial adipose tissue volume and annexin A2/fetuin-A signalling are linked to coronary calcification in advanced coronary artery disease: computed tomography and proteomic biomarkers from the EPICHEART study. Atherosclerosis 292:75–83. https://doi.org/10.1016/j.atherosclerosis.2019.11.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was performed in partial fulfillment of the requirements for the biochemistry MSc thesis of Ehsan M. Noori, in the school of medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. The authors gratefully acknowledge the Research Council of Kermanshah University of Medical Sciences (Grant Number: 95005) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Kiani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi-Noori, E., Salehi, N., Mozafari, H. et al. Association of AHSG gene polymorphisms with serum Fetuin-A levels in individuals with cardiovascular calcification in west of Iran. Mol Biol Rep 47, 1809–1820 (2020). https://doi.org/10.1007/s11033-020-05275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05275-z

Keywords

Navigation