Skip to main content

Advertisement

Log in

The inhibition of miR-17-5p promotes cortical neuron neurite growth via STAT3/GAP-43 pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a devastating disease associated with locomotor function impair. The limited regenerative capability of the neural axon is one of the major factors that hinders the recovery of SCI. To enhance the regenerative ability of neuron is a promising strategy that repairs SCI. We previously proved miR-17-5p could target Signal Transducer and Activator of Transcription 3 (STAT3) in primary sensory neuron. We speculated that miR-17-5p was the miRNA that targets STAT3. The Dual-luciferase reporter assay indicated miR-17-5p could bind the 3′UTR of STAT3 mRNA. The RT-qPCR and Western blot assay showed miR-17-5p could not degenerate the mRNA of STAT3, but inhibit the expression of Signal Transducer and Activator of Transcription 3 (STAT3) via translation inhibition. MiR-17-5p inhibitor promoted the expression of STAT3, phosphorylated-STAT3 (p-STAT3) and Growth Associate Protein-43 (GAP-43), and this promotion was inhibited by STAT3 siRNA. MiR-17-5p mimics and inhibitor inhibited and promoted the neurite growth, respectively. MiR-17-5p inhibitor promoted the axon growth and AG490, the STAT3 phosphorylation inhibitor, inhibited this promotion. MiR-17-5p mimics inhibited the expression of STAT3, p-STAT3 and GAP-43, while the inhibitor promoted their expression. AG490 did not alter the expression of STAT3, while downregulated the expression both p-STAT3 and GAP-43 in miR-17-5p inhibitor&AG490 group. Taken together, these data indicated miR-17-5p could regulated cortical neuron axon growth via STAT3/GAP-43 pathway by targeting STAT3 mRNA 3′UTR. Therefore, miR-17-5p/STAT3/GAP-43 pathway plays a key role in regulating cortical neuron axon growth and could be a novel target to treat SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhu Y, Wu Y, Zhang R (2017) Electro-acupuncture promotes the proliferation of neural stem cells and the survival of neurons by downregulating miR-449a in rat with spinal cord injury. EXCLI J 16:363–374. https://doi.org/10.17179/excli2017-123

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kang Y, Ding H, Zhou H, Wei Z, Liu L, Pan D, Feng S (2018) Epidemiology of worldwide spinal cord injury: a literature review. J Neurorestoratol 6(1):1–9. https://doi.org/10.2147/JN.S143236

    Article  Google Scholar 

  3. Gong ZM, Tang ZY, Sun XL (2018) miR-411 suppresses acute spinal cord injury via downregulation of Fas ligand in rats. Biochem Biophys Res Commun 501(2):501–506. https://doi.org/10.1016/j.bbrc.2018.05.022

    Article  CAS  PubMed  Google Scholar 

  4. Xie W, Yang SY, Zhang Q, Zhou Y, Wang Y, Liu R, Wang W, Shi J, Ning B, Jia T (2018) Knockdown of microRNA-21 promotes neurological recovery after acute spinal cord injury. Neurochem Res. https://doi.org/10.1007/s11064-018-2580-1

    Article  PubMed  Google Scholar 

  5. Shi LB, Tang PF, Zhang W, Zhao YP, Zhang LC, Zhang H (2016) Naringenin inhibits spinal cord injury-induced activation of neutrophils through miR-223. Gene 592(1):128–133. https://doi.org/10.1016/j.gene.2016.07.037

    Article  CAS  PubMed  Google Scholar 

  6. Reis KP, Sperling LE, Teixeira C, Paim A, Alcantara B, Vizcay-Barrena G, Fleck RA, Pranke P (2018) Application of PLGA/FGF-2 coaxial microfibers in spinal cord tissue engineering: an in vitro and in vivo investigation. Regen Med 13(7):785–801. https://doi.org/10.2217/rme-2018-0060

    Article  CAS  PubMed  Google Scholar 

  7. Scholpa NE, Williams H, Wang W, Corum D, Narang A, Tomlinson S, Sulllivan PG, Rabchevsky AGPD, Schnellmann RG (2018) Pharmacological stimulation of mitochondrial biogenesis using the FDA-approved beta2-adrenoreceptor agonist formoterol for the treatment of spinal cord injury. J Neurotrauma. https://doi.org/10.1089/neu.2018.5669

    Article  PubMed  Google Scholar 

  8. Cheng Z, He X (2017) Anti-inflammatory effect of stem cells against spinal cord injury via regulating macrophage polarization. J Neurorestoratol 5:31–38. https://doi.org/10.2147/jn.s115696

    Article  CAS  Google Scholar 

  9. Zhongju S, Huang H, Feng S (2017) Stem cell-based therapies to treat spinal cord injury: a review. J Neurorestoratol 5(1):125–131

    Google Scholar 

  10. Hao J, Li B, Duan HQ, Zhao CX, Zhang Y, Sun C, Pan B, Liu C, Kong XH, Yao X, Feng SQ (2017) Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats. Neural Regen Res 12(6):959–968. https://doi.org/10.4103/1673-5374.208591

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fawcett JW, Verhaagen J (2018) Intrinsic determinants of axon regeneration. Dev Neurobiol 78(10):890–897. https://doi.org/10.1002/dneu.22637

    Article  PubMed  Google Scholar 

  12. Wang XW, Li Q, Liu CM, Hall PA, Jiang JJ, Katchis CD, Kang S, Dong BC, Li S, Zhou FQ (2018) Lin28 signaling supports mammalian PNS and CNS axon regeneration. Cell Rep 24(10):2540-2552.e2546. https://doi.org/10.1016/j.celrep.2018.07.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neumann S, Skinner K, Basbaum AI (2005) Sustaining intrinsic growth capacity of adult neurons promotes spinal cord regeneration. Proc Natl Acad Sci USA 102(46):16848–16852. https://doi.org/10.1073/pnas.0508538102

    Article  CAS  PubMed  Google Scholar 

  14. Finelli MJ, Wong JK, Zou H (2013) Epigenetic regulation of sensory axon regeneration after spinal cord injury. J Neurosci 33(50):19664–19676. https://doi.org/10.1523/JNEUROSCI.0589-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang L, Wang Y, Zheng Q, Yang T, Zhao P, Zhao H, Zhang Q, Zhao Y, Qi F, Li K, Chen Z, Li J, Zhang N, Fan Y, Wang L (2017) Effects of Bu Shen Yi sui capsule on NogoA/NgR and its signaling pathways RhoA/ROCK in mice with experimental autoimmune encephalomyelitis. BMC Complement Altern Med 17(1):346. https://doi.org/10.1186/s12906-017-1847-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yin H, Shen L, Xu C, Liu J (2018) Lentivirus-mediated overexpression of miR-29a promotes axonal regeneration and functional recovery in experimental spinal cord injury via PI3K/Akt/mTOR pathway. Neurochem Res 43(11):2038–2046. https://doi.org/10.1007/s11064-018-2625-5

    Article  CAS  PubMed  Google Scholar 

  17. Ko HR, Kwon IS, Hwang I, Jin EJ, Shin JH, Brennan-Minnella AM, Swanson R, Cho SW, Lee KH, Ahn JY (2016) Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration. eLife. https://doi.org/10.7554/eLife.20799

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang W, Liu R, Su Y, Li H, Xie W, Ning B (2018) MicroRNA-21-5p mediates TGF-beta-regulated fibrogenic activation of spinal fibroblasts and the formation of fibrotic scars after spinal cord injury. Int J Biol Sci 14(2):178–188. https://doi.org/10.7150/ijbs.24074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu J, Wu Y (2017) Electro-acupuncture-modulated miR-214 prevents neuronal apoptosis by targeting Bax and inhibits sodium channel Nav1.3 expression in rats after spinal cord injury. Biomed Pharmacother 89:1125–1135. https://doi.org/10.1016/j.biopha.2017.02.077

    Article  CAS  PubMed  Google Scholar 

  20. Wang CY, Deneen B, Tzeng SF (2017) MicroRNA-212 inhibits oligodendrocytes during maturation by down-regulation of differentiation-associated gene expression. J Neurochem 143(1):112–125. https://doi.org/10.1111/jnc.14138

    Article  CAS  PubMed  Google Scholar 

  21. Li G, Chen T, Zhu Y, Xiao X, Bu J, Huang Z (2018) MiR-103 alleviates autophagy and apoptosis by regulating SOX2 in LPS-injured PC12 cells and SCI rats. Iran J Basic Med Sci 21(3):292–300. https://doi.org/10.22038/ijbms.2018.25980.6392

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang T, Li B, Yuan X, Cui L, Wang Z, Zhang Y, Yu M, Xiu Y, Zhang Z, Li W, Wang F, Guo X, Zhao X, Chen X (2018) MiR-20a plays a key regulatory role in the repair of spinal cord dorsal column lesion via PDZ-RhoGEF/RhoA/GAP43 axis in rat. Cell Mol Neurobiol.https://doi.org/10.1007/s10571-018-0635-0

    Article  PubMed  Google Scholar 

  23. Strickland ER, Hook MA, Balaraman S, Huie JR, Grau JW, Miranda RC (2011) MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 186:146–160. https://doi.org/10.1016/j.neuroscience.2011.03.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Z, Yuan W, Li B, Chen X, Zhang Y, Chen C, Yu M, Xiu Y, Li W, Cao J, Wang X, Tao W, Guo X, Feng S, Wang T (2018) PEITC promotes neurite growth in primary sensory neurons via the miR-17-5p/STAT3/GAP-43 axis. J Drug Target 27:1–39. https://doi.org/10.1080/1061186x.2018.1486405

    Article  CAS  Google Scholar 

  25. Jiang R, Zhang C, Gu R, Wu H (2017) MicroRNA-489-3p inhibits neurite growth by regulating PI3K/AKT pathway in spinal cord injury. Pharmazie 72(5):272–278. https://doi.org/10.1691/ph.2017.6972

    Article  CAS  PubMed  Google Scholar 

  26. Bhalala OG, Srikanth M, Kessler JA (2013) The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9(6):328–339. https://doi.org/10.1038/nrneurol.2013.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang T, Yuan W, Liu Y, Zhang Y, Wang Z, Chen X, Feng S, Xiu Y, Li W (2015) miR-142-3p is a potential therapeutic target for sensory function recovery of spinal cord injury. Med Sci Monit 21:2553–2556. https://doi.org/10.12659/MSM.894098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu D, Lee S, Luo J, Xia H, Gushchina S, Richardson PM, Yeh J, Krugel U, Franke H, Zhang Y, Bo X (2018) Intraneural injection of ATP stimulates regeneration of primary sensory axons in the spinal cord. J Neurosci 38(6):1351–1365. https://doi.org/10.1523/JNEUROSCI.1660-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang C, Yu XH, Zheng XL, Ou X, Tang CK (2018) Interferon-stimulated gene 15 promotes cholesterol efflux by activating autophagy via the miR-17-5p/Beclin-1 pathway in THP-1 macrophage-derived foam cells. Eur J Pharmacol 827:13–21. https://doi.org/10.1016/j.ejphar.2018.02.042

    Article  CAS  PubMed  Google Scholar 

  30. Xu Z, Zou C, Yu W, Xu S, Huang L, Khan Z, Wang J, Liang G, Wang Y (2019) Inhibition of TLR4-mediated STAT3 activation attenuates Angiotensin II-induced renal fibrosis and dysfunction. Br J Pharmacol. https://doi.org/10.1111/bph.14686

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang T, Li B, Wang Z, Wang X, Xia Z, Ning G, Wang X, Zhang Y, Cui L, Yu M, Zhang L, Zhang Z, Yuan W, Guo X, Yuan X, Feng S, Chen X (2019) Sorafenib promotes sensory conduction function recovery via miR-142-3p/AC9/cAMP axis post dorsal column injury. Neuropharmacology 148:347–357. https://doi.org/10.1016/j.neuropharm.2019.01.031

    Article  CAS  PubMed  Google Scholar 

  32. Zhao X, Chen C, Wei Y, Zhao G, Liu L, Wang C, Zhang J, Kong X (2019) Novel mutations of COL4A3, COL4A4, and COL4A5 genes in Chinese patients with Alport Syndrome using next generation sequence technique. Mol Genet Genom Med 7:e653. https://doi.org/10.1002/mgg3.653

    Article  CAS  Google Scholar 

  33. Li B, Sun C, Zhao C, Yao X, Zhang Y, Duan H, Hao J, Guo X, Fan B, Ning G, Feng S (2018) Epidemiological profile of thoracolumbar fracture (TLF) over a period of 10 years in Tianjin, China. J Spinal Cord Med 38:214–223. https://doi.org/10.1080/10790268.2018.1455018

    Article  Google Scholar 

  34. He Y, Lv B, Huan Y, Liu B, Li Y, Jia L, Qu C, Wang D, Yu H, Yuan H (2018) Zhenbao pill protects against acute spinal cord injury via miR-146a-5p regulating the expression of GPR17. Biosci Rep. https://doi.org/10.1042/BSR20171132

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez-Gomez I, Martin-Manjarres S, Martin-Garcia M, Vila-Maldonado S, Gil-Agudo A, Alegre L, Ara I (2018) Cardiorespiratory fitness and arm bone mineral health in young males with spinal cord injury: the mediator role of lean mass. J Sports Sci. https://doi.org/10.1080/02640414.2018.1522948

    Article  PubMed  Google Scholar 

  36. Zhu L (2018) Hypothermia used in medical applications for brain and spinal cord injury patients. Adv Exp Med Biol 1097:295–319. https://doi.org/10.1007/978-3-319-96445-4_16

    Article  CAS  PubMed  Google Scholar 

  37. Huang S, Liu X, Zhang J, Bao G, Xu G, Sun Y, Shen Q, Lian M, Huang Y, Cui Z (2015) Expression of peroxiredoxin 1 after traumatic spinal cord injury in rats. Cell Mol Neurobiol 35(8):1217–1226

    Article  CAS  Google Scholar 

  38. Zhang K, Wu S, Li Z, Zhou J (2017) MicroRNA-211/BDNF axis regulates LPS-induced proliferation of normal human astrocyte through PI3K/AKT pathway. Biosci Rep. https://doi.org/10.1042/BSR20170755

    Article  PubMed  PubMed Central  Google Scholar 

  39. Su LN, Song XQ, Xue ZX, Zheng CQ, Yin HF, Wei HP (2018) Network analysis of microRNAs, transcription factors, and target genes involved in axon regeneration. J Zhejiang Univ Sci B 19(4):293–304. https://doi.org/10.1631/jzus.B1700179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oh SE, Park HJ, He L, Skibiel C, Junn E, Mouradian MM (2018) The Parkinson's disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress. Redox Biol 19:62–73. https://doi.org/10.1016/j.redox.2018.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He QQ, Xiong LL, Liu F, He X, Feng GY, Shang FF, Xia QJ, Wang YC, Qiu DL, Luo CZ, Liu J, Wang TH (2016) MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep 6:35205. https://doi.org/10.1038/srep35205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shen LM, Song ZW, Hua Y, Chao X, Liu JB (2017) miR-181d-5p promotes neurite outgrowth in PC12 cells via PI3K/Akt pathway. CNS Neurosci Ther 23(11):894–906. https://doi.org/10.1111/cns.12761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hung CC, Lin CH, Chang H, Wang CY, Lin SH, Hsu PC, Sun YY, Lin TN, Shie FS, Kao LS, Chou CM, Lee YH (2016) Astrocytic GAP43 induced by the TLR4/NF-kappaB/STAT3 axis attenuates astrogliosis-mediated microglial activation and neurotoxicity. J Neurosci 36(6):2027–2043. https://doi.org/10.1523/JNEUROSCI.3457-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xuan YT, Guo Y, Han H, Zhu Y, Bolli R (2001) An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci USA 98(16):9050–9055. https://doi.org/10.1073/pnas.161283798

    Article  CAS  PubMed  Google Scholar 

  45. Cafferty WB, Gardiner NJ, Das P, Qiu J, McMahon SB, Thompson SW (2004) Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci 24(18):4432–4443. https://doi.org/10.1523/JNEUROSCI.2245-02.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hall E, Traystman R (2009) Role of animal studies in the design of clinical trials. Front Neurol Neurosci 25:10–33

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Yanjun Zhang and postgraduate student Shichang Yang for their assistance at cell culture and detection. This work was supported by the General Program of Natural Science Foundation of Hebei Province of China (Grant Number H2017101030), the Medical Science and Technology Youth Cultivation Project of the Chinese People’s Liberation Army (Grant Numbers 16QNP074 and 13QNP017), the Research and Development of Science and Technology Program Supported by Chengde Government (Grant Numbers 201606A062, 201701A125, 201701A127), the Key Program of Medical Science Foundation of Hebei province of China (Grant Number 20190189).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, XLG, KW, TYW and ZJW; Methodology, YCX, ZZ, CJC and MLZ; Software, HS; Validation, WHL and MY; Formal Analysis, YCX; Investigation, MLZ; Data Curation, LZ; Writing-Original Draft Preparation, BL, LZ, ZWX and XW; Writing-Review & Editing, TYW and KW; Visualization, ZJW; Supervision, XLG, KW, TYW and ZJW; Project Administration, TYW; Funding Acquisition, TYW, ZZ, CJC and WHL. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kai Wang, Xiaoling Guo, Liqun Ren or Tianyi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, Z., Li, B. et al. The inhibition of miR-17-5p promotes cortical neuron neurite growth via STAT3/GAP-43 pathway. Mol Biol Rep 47, 1795–1802 (2020). https://doi.org/10.1007/s11033-020-05273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05273-1

Keywords

Navigation