Skip to main content

Advertisement

Log in

Human Tat-specific factor 1 binds the HIV-1 genome and selectively transports HIV-1 RNAs

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus type 1 (HIV-1) propagation requires many human cofactors. Multiple groups have demonstrated that Tat-specific factor 1 (Tat-SF1) is an HIV-1 dependency factor. Depletion of this protein lowers HIV-1 infectivity, however, it does not affect the overall levels of viral RNA. Rather, Tat-SF1 regulates the relative levels of each RNA size class. This would be consistent with roles in splicing, transport, and/or stability of viral RNAs. We hypothesized that if Tat-SF1 plays any of these roles, then we should detect binding of the protein to the RNA genome. Furthermore, knocking down Tat-SF1 should result in altered RNA stability and/or localization in human cells. Fragments of the HIV-1 genome were used as RNA probes in electrophoretic mobility shift assays and fluorescence correlation spectroscopy experiments. Our results show that Tat-SF1 can form a complex with TAR RNA in vitro, independent of Tat. This factor interacts with at least one additional location in the 5’ end of the HIV-1 genome. Tat seems to enhance the formation of this complex. To analyze HIV-1 RNA localization, HeLa cells with Tat-SF1 knocked down were also transfected with a proviral clone. RNA from nuclear and cytoplasmic fractions was purified, followed by RT-qPCR analysis. Tat-SF1 likely binds the HIV-1 RNA genome at TAR and potentially other locations and selectively transports HIV-1 RNAs, facilitating the unspliced RNA’s nuclear export while retaining singly spliced RNAs in the nucleus. This is a novel role for this HIV-1 dependency factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karn J (1999) Tackling Tat. J Mol Biol 293:235–254

    CAS  PubMed  Google Scholar 

  2. Emerman M, Malim MH (1998) HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 280:1880–1884

    CAS  PubMed  Google Scholar 

  3. Rosen CA, Sodroski JG, Haseltine WA (1985) The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41:813–823

    CAS  PubMed  Google Scholar 

  4. Muesing MA, Smith DH, Capon DJ (1987) Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48:691–701

    CAS  PubMed  Google Scholar 

  5. Berkhout B, Silverman RH, Jeang KT (1989) Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59:273–282

    CAS  PubMed  Google Scholar 

  6. Marciniak RA, Garcia-Blanco MA, Sharp PA (1990) Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus. Proc Natl Acad Sci USA 87:3624–3628

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rounseville MP, Kumar A (1992) Binding of a host cell nuclear protein to the stem region of human immunodeficiency virus type 1 trans-activation-responsive RNA. J Virol 66:1688–1694

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dingwall C, Ernberg I, Gait MJ, Green SM, Heaphy S, Karn J et al (1990) HIV-1 tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure. EMBO J 9:4145–4153

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Roy S, Delling U, Chen CH, Rosen CA, Sonenberg N (1990) A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes Dev 4:1365–1373

    CAS  PubMed  Google Scholar 

  10. Tao J, Chen L, Frankel AD (1997) Dissection of the proposed base triple in human immunodeficiency virus TAR RNA indicates the importance of the Hoogsteen interaction. Biochemistry 36:3491–3495

    CAS  PubMed  Google Scholar 

  11. Weeks KM, Ampe C, Schultz SC, Steitz TA, Crothers DM (1990) Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science 249:1281–1285

    CAS  PubMed  Google Scholar 

  12. Wei P, Garber ME, Fang SM, Fischer WH, Jones KA (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462

    CAS  PubMed  Google Scholar 

  13. Zhou Q, Chen D, Pierstorff E, Luo K (1998) Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages. Embo J 17:3681–3691

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bieniasz PD, Grdina TA, Bogerd HP, Cullen BR (1999) Recruitment of cyclin T1/P-TEFb to an HIV type 1 long terminal repeat promoter proximal RNA target is both necessary and sufficient for full activation of transcription. Proc Natl Acad Sci USA 96:7791–7796

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bieniasz PD, Grdina TA, Bogerd HP, Cullen BR (1998) Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J 17:7056–7065

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sheline CT, Milocco LH, Jones KA (1991) Two distinct nuclear transcription factors recognize loop and bulge residues of the HIV-1 TAR RNA hairpin. Genes Dev 5:2508–2520

    CAS  PubMed  Google Scholar 

  17. Wu F, Garcia J, Sigman D, Gaynor R (1991) Tat regulates binding of the human immunodeficiency virus trans-activating region RNA loop-binding protein TRP-185. Genes Dev 5:2128–2140

    CAS  PubMed  Google Scholar 

  18. Sertznig H, Hillebrand F, Erkelenz S, Schaal H, Widera M (2018) Behind the scenes of HIV-1 replication: alternative splicing as the dependency factor on the quiet. Virology 516:176–188

    CAS  PubMed  Google Scholar 

  19. Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060

    CAS  PubMed  Google Scholar 

  20. Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M et al (1997) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390:308–311

    CAS  PubMed  Google Scholar 

  21. Stade K, Ford CS, Guthrie C, Weis K (1997) Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90:1041–1050

    CAS  PubMed  Google Scholar 

  22. Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338:254–257

    CAS  PubMed  Google Scholar 

  23. Sonza S, Mutimer HP, O'Brien K, Ellery P, Howard JL, Axelrod JH et al (2002) Selectively reduced tat mRNA heralds the decline in productive human immunodeficiency virus type 1 infection in monocyte-derived macrophages. J Virol 76:12611–12621

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Purcell DF, Martin MA (1993) Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 67:6365–6378

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gorry PR, Howard JL, Churchill MJ, Anderson JL, Cunningham A, Adrian D et al (1999) Diminished production of human immunodeficiency virus type 1 in astrocytes results from inefficient translation of gag, env, and nef mRNAs despite efficient expression of Tat and Rev. J Virol 73:352–361

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Amendt BA, Hesslein D, Chang LJ, Stoltzfus CM (1994) Presence of negative and positive cis-acting RNA splicing elements within and flanking the first tat coding exon of human immunodeficiency virus type 1. Mol Cell Biol 14:3960–3970

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jablonski JA, Caputi M (2009) Role of cellular RNA processing factors in human immunodeficiency virus type 1 mRNA metabolism, replication, and infectivity. J Virol 83:981–992

    CAS  PubMed  Google Scholar 

  28. Pollard VW, Malim MH (1998) The HIV-1 Rev protein. Annu Rev Microbiol 52:491–532

    CAS  PubMed  Google Scholar 

  29. Stoltzfus CM, Madsen JM (2006) Role of viral splicing elements and cellular RNA binding proteins in regulation of HIV-1 alternative RNA splicing. Curr HIV Res 4:43–55

    CAS  PubMed  Google Scholar 

  30. Wentz MP, Moore BE, Cloyd MW, Berget SM, Donehower LA (1997) A naturally arising mutation of a potential silencer of exon splicing in human immunodeficiency virus type 1 induces dominant aberrant splicing and arrests virus production. J Virol 71:8542–8551

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC et al (2008) Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4:495–504

    CAS  PubMed  Google Scholar 

  32. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ et al (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926

    CAS  PubMed  Google Scholar 

  33. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT et al (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Q, Sharp PA (1996) Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV-1 Tat. Science 274:605–610

    CAS  PubMed  Google Scholar 

  35. Li XY, Green MR (1998) The HIV-1 Tat cellular coactivator Tat-SF1 is a general transcription elongation factor. Genes Dev 12:2992–2996

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Parada CA, Roeder RG (1999) A novel RNA polymerase II-containing complex potentiates Tat-enhanced HIV-1 transcription. Embo J 18:3688–3701

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Miller HB, Saunders KO, Tomaras GD, Garcia-Blanco MA (2009) Tat-SF1 is not required for Tat transactivation but does regulate the relative levels of unspliced and spliced HIV-1 RNAs. PLoS One 4(5):e5710

    PubMed  PubMed Central  Google Scholar 

  38. Stolarchuk C, Dent M, Miller HB (2012) Tat-specific factor 1 modulates HIV-1 RNA size class levels. J Young Investig 23:8–14

    Google Scholar 

  39. Loerch S, Leach JR, Horner SW, Maji D, Jenkins JL, Pulvino MJ et al (2019) The pre-mRNA splicing and transcription factor Tat-SF1 is a functional partner of the spliceosome SF3b1 subunit via a U2AF homology motif interface. J Biol Chem 294:2892–2902

    CAS  PubMed  Google Scholar 

  40. Smith MJ, Kulkarni S, Pawson T (2004) FF domains of CA150 bind transcription and splicing factors through multiple weak interactions. Mol Cell Biol 24:9274–9285

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim JB, Yamaguchi Y, Wada T, Handa H, Sharp PA (1999) Tat-SF1 protein associates with RAP30 and human SPT5 proteins. Mol Cell Biol 19:5960–5968

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fong YW, Zhou Q (2001) Stimulatory effect of splicing factors on transcriptional elongation. Nature 414:929–933

    CAS  PubMed  Google Scholar 

  43. Miller HB, Robinson TJ, Gordan R, Hartemink AJ, Garcia-Blanco MA (2011) Identification of Tat-SF1 cellular targets by exon array analysis reveals dual roles in transcription and splicing. RNA 17:665–674

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fong YW, Zhou Q (2000) Relief of two built-In autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter. Mol Cell Biol 20:5897–5907

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M et al (2005) Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 79:10108–10125

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Suzuki K, Bose P, Leong-Quong RY, Fujita DJ, Riabowol K (2010) REAP: a two minute cell fractionation method. BMC Res Notes 3:294

    PubMed  PubMed Central  Google Scholar 

  47. Wang J, Yang J, Yang Z, Lu X, Jin C, Cheng L et al (2016) RbAp48, a novel inhibitory factor that regulates the transcription of human immunodeficiency virus type 1. Int J Mol Med 38:267–274

    CAS  PubMed  Google Scholar 

  48. Zhang B, Gunawardane L, Niazi F, Jahanbani F, Chen X, Valadkhan S (2014) A novel RNA motif mediates the strict nuclear localization of a long noncoding RNA. Mol Cell Biol 34:2318–2329

    PubMed  PubMed Central  Google Scholar 

  49. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Xing L, Niu M, Kleiman L (2012) In vitro and in vivo analysis of the interaction between RNA helicase A and HIV-1 RNA. J Virol 86:13272–13280

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ream JA, Lewis LK, Lewis KA (2016) Rapid agarose gel electrophoretic mobility shift assay for quantitating protein: RNA interactions. Anal Biochem 511:36–41

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Müller P, Schwille P, Weidemann T (2014) PyCorrFit—generic data evaluation for fluorescence correlation spectroscopy. Bioinformatics 30:2532–2533

    PubMed  PubMed Central  Google Scholar 

  54. Berland KM (2004) Fluorescence correlation spectroscopy: a new tool for quantification of molecular interactions. Methods Mol Biol 261:383–398

    CAS  PubMed  Google Scholar 

  55. Van Orden A, Fogarty K, Jung J (2004) Fluorescence fluctuation spectroscopy: a coming of age story. Appl Spectrosc 58(5):122A–137A

    PubMed  Google Scholar 

  56. Culbertson CT, Jacobson SC, Michael Ramsey J (2002) Diffusion coefficient measurements in microfluidic devices. Talanta 56:365–373

    CAS  PubMed  Google Scholar 

  57. Berkhout B, Gatignol A, Silver J, Jeang KT (1990) Efficient trans-activation by the HIV-2 Tat protein requires a duplicated TAR RNA structure. Nucleic Acids Res 18:1839–1846

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Paz S, Krainer AR, Caputi M (2014) HIV-1 transcription is regulated by splicing factor SRSF1. Nucleic Acids Res 42:13812–13823

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim SY, Byrn R, Groopman J, Baltimore D (1989) Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J Virol 63:3708–3713

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang Y, Steitz JA (2005) SRprises along a messenger's journey. Mol Cell 17:613–615

    CAS  PubMed  Google Scholar 

  61. Najera I, Krieg M, Karn J (1999) Synergistic stimulation of HIV-1 rev-dependent export of unspliced mRNA to the cytoplasm by hnRNP A1. J Mol Biol 285:1951–1964

    CAS  PubMed  Google Scholar 

  62. Mouland AJ, Xu H, Cui H, Krueger W, Munro TP, Prasol M et al (2001) RNA trafficking signals in human immunodeficiency virus type 1. Mol Cell Biol 21:2133–2143

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Green VA, Arbuthnot P, Weinberg MS (2012) Impact of sustained RNAi-mediated suppression of cellular cofactor Tat-SF1 on HIV-1 replication in CD4+ T cells. Virol J 9:272

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Corsini NS, Peer AM, Moeseneder P, Roiuk M, Burkard TR, Theussl HC et al (2018) Coordinated control of mRNA and rRNA processing controls embryonic stem cell Pluripotency and differentiation. Cell Stem Cell 22(4):543–558

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The following reagents were obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: pSG3∆env from Drs. John C. Kappes and Xiaoyun Wu and HIV-1 IIIB Tat recombinant protein. This work was fully funded by High Point University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather B. Miller.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulver, M.J., Trautman, J.P., Goodwin, A.P. et al. Human Tat-specific factor 1 binds the HIV-1 genome and selectively transports HIV-1 RNAs. Mol Biol Rep 47, 1759–1772 (2020). https://doi.org/10.1007/s11033-020-05267-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05267-z

Keywords

Navigation