Skip to main content
Log in

mir-320b rs755613466 T>C and mir-27a rs780199251 G>A polymorphisms and the risk of IVF failure in Kurdish women

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In vitro fertilization failure is not only the cause of despair among couples and individuals undergoing the treatment, it has also been contributing to the impediment of assistive reproductive technologies’ development. MicroRNAs (miRNAs) have been linked to significant events in the reproduction course. The identification of miRNA polymorphisms may provide a good lead for the potential of diagnosis and treatment of unidentified in vitro fertilization (IVF) failure causes. The aim of our study is to explore the association between miRNA polymorphisms (mir-320b T>C and mir-27a G >A) and IVF failure. Our case–control study consisted of 200 Kurdish women in total, 100 with IVF failure and the other 100 control who have had at least two successful pregnancies and no history of pregnancy loss, we used tetra amplification refractory mutation system PCR to identify the polymorphisms within the groups. The TT genotype of mir-320b was found more frequently in IVF failure patients when compared to the healthy women (OR 8.07, CI 2.18–29.78, P = 0.001) and T allele was more present in the case group (OR 1.83, CI 91.04–2.12, P = 0.034), however mir-27a seemed to show no association with IVF failure in regards to genotype and allele frequencies. The difference in genotype and allele frequencies of mir-320b of the two groups may indicate that it has an effect on the target mRNAs and alter the implantation of embryo during IVF cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. e-Life 4. https://doi.org/10.7554/eLife.05005

  2. Backes C et al (2016) miRPathDB: a new dictionary on microRNAs and target pathways. Nucleic Acids Res 45:D90–D96. https://doi.org/10.1093/nar/gkw926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bitetti A et al (2018) MicroRNA degradation by a conserved target RNA regulates animal behavior. Nat Struct Mol Biol 25:244–251. https://doi.org/10.1038/s41594-018-0032-x

    Article  CAS  PubMed  Google Scholar 

  4. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85. https://doi.org/10.1371/journal.pbio.0030085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chakrabarty A, Tranguch S, Daikoku T, Jensen K, Furneaux H, Dey SK (2007) MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci USA 104:15144–15149. https://doi.org/10.1073/pnas.0705917104

    Article  CAS  PubMed  Google Scholar 

  6. Chen Q et al (2009) Embryo-uterine cross-talk during implantation: the role of Wnt signaling. Mol Hum Reprod 15:215–221. https://doi.org/10.1093/molehr/gap009

    Article  CAS  PubMed  Google Scholar 

  7. Cho SH et al (2016) Association of miR-146aC%3eG, miR-149C%3eT, miR-196a2T%3eC, and miR-499A%3eG polymorphisms with risk of recurrent implantation failure in Korean women. Eur J Obstet Gynecol Reprod Biol 202:14–19. https://doi.org/10.1016/j.ejogrb.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  8. Collins A, Ke X (2012) Primer1: primer design web service for tetra-primer ARMS-PCR. Open Bioinform J 6:55–58

    Article  Google Scholar 

  9. Denicol AC et al (2014) The WNT signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo. FASEB J Off Publ Feder Am Soc Exp Biol 28:3975–3986. https://doi.org/10.1096/fj.14-253112

    Article  CAS  Google Scholar 

  10. Dentillo DB, Souza FR, Meola J, Vieira GS, Yazlle ME, Goulart LR, Martelli L (2007) No evidence of association of MUC-1 genetic polymorphism with embryo implantation failure. Braz J Med Biol Res 40:793–797

    Article  CAS  Google Scholar 

  11. Di Pietro C et al (2018) MiR-27a-3p and miR-124–3p, upregulated in endometrium and serum from women affected by Chronic Endometritis, are new potential molecular markers of endometrial receptivity. Am J Reprod Immunol (New York NY 1989) 80:e12858. https://doi.org/10.1111/aji.12858

    Article  Google Scholar 

  12. Feng R et al (2015) MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep 5:8689. https://doi.org/10.1038/srep08689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferlita A, Battaglia R, Andronico F, Caruso S (2018) Non-coding RNAs in endometrial physiopathology. 19. https://doi.org/10.3390/ijms19072120

    Article  Google Scholar 

  14. Hsieh IS et al (2013) MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis 34:530–538. https://doi.org/10.1093/carcin/bgs371

    Article  CAS  PubMed  Google Scholar 

  15. Kim J, Lee J, Jun JH (2019) Identification of differentially expressed microRNAs in outgrowth embryos compared with blastocysts and non-outgrowth embryos in mice. Reprod Fertil Dev 31:645–657. https://doi.org/10.1071/rd18161

    Article  CAS  PubMed  Google Scholar 

  16. Kovacs P (2014) Embryo selection: the role of time-lapse monitoring. Reprod Biol Endocrinol 12:124. https://doi.org/10.1186/1477-7827-12-124

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kroliczewski J, Sobolewska A, Lejnowski D, Collawn JF, Bartoszewski R (2018) microRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene 640:66–72. https://doi.org/10.1016/j.gene.2017.10.021

    Article  CAS  PubMed  Google Scholar 

  18. Kropp J, Khatib H (2015) Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J Dairy Sci 98:6552–6563. https://doi.org/10.3168/jds.2015-9510

    Article  CAS  PubMed  Google Scholar 

  19. Lee HA et al (2019) Association between miR-605A%3eG, miR-608G%3eC, miR-631I%3eD, miR-938C%3eT, and miR-1302-3C%3eT polymorphisms and risk of recurrent implantation failure. Reprod Sci (Thousand Oaks Calif) 26:469–475. https://doi.org/10.1177/1933719118773413

    Article  CAS  Google Scholar 

  20. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  Google Scholar 

  21. Li R, Qiao J, Wang L, Li L, Zhen X, Liu P, Zheng X (2011) MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod Biol Endocrinol 9:29–29. https://doi.org/10.1186/1477-7827-9-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murray MJ, Lessey BA (1999) Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis. Semin Reprod Endocrinol 17:275–290. https://doi.org/10.1055/s-2007-1016235

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura K, Sawada K, Yoshimura A, Kinose Y, Nakatsuka E, Kimura T (2016) Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol Cancer 15:48–48. https://doi.org/10.1186/s12943-016-0536-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nothnick WB, Al-Hendy A, Lue JR (2015) Circulating micro-RNAs as diagnostic biomarkers for endometriosis: privation and promise. J Minim Invasive Gynecol 22:719–726. https://doi.org/10.1016/j.jmig.2015.02.021

    Article  PubMed  PubMed Central  Google Scholar 

  25. O'Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. https://doi.org/10.3389/fendo.2018.00402

    Article  Google Scholar 

  26. O’Flynn N (2014) Assessment and treatment for people with fertility problems: NICE guideline. Br J Gen Pract 64:50–51

    Article  Google Scholar 

  27. Perry JK, Lins RJ, Lobie PE, Mitchell MD (2009) Regulation of invasive growth: similar epigenetic mechanisms underpin tumour progression and implantation in human pregnancy. Clin Sci (Lond Engl 1979) 118:451–457. https://doi.org/10.1042/cs20090503

    Article  Google Scholar 

  28. Pogribny IP (2018) MicroRNAs as biomarkers for clinical studies. Exp Biol Med (Maywood, NJ) 243:283–290. https://doi.org/10.1177/1535370217731291

    Article  CAS  Google Scholar 

  29. Qin W, Tang Y, Yang N, Wei X, Wu J (2016) Potential role of circulating microRNAs as a biomarker for unexplained recurrent spontaneous abortion. Fertil Steril 105:1247–1254.e1243. https://doi.org/10.1016/j.fertnstert.2016.01.028

    Article  CAS  PubMed  Google Scholar 

  30. Rah H et al (2017) miR-27a and miR-449b polymorphisms associated with a risk of idiopathic recurrent pregnancy loss. 12:e0177160. https://doi.org/10.1371/journal.pone.0177160

    Article  Google Scholar 

  31. Sako K et al (2014) Emi2 mediates meiotic MII arrest by competitively inhibiting the binding of Ube2S to the APC/C. Nat Commun 5:3667. https://doi.org/10.1038/ncomms4667

    Article  PubMed  Google Scholar 

  32. Sha AG et al (2011) Genome-wide identification of micro-ribonucleic acids associated with human endometrial receptivity in natural and stimulated cycles by deep sequencing. Fertil Steril 96:150–155.e155. https://doi.org/10.1016/j.fertnstert.2011.04.072

    Article  CAS  PubMed  Google Scholar 

  33. Shi C et al (2017) Endometrial microRNA signature during the window of implantation changed in patients with repeated implantation failure. Chin Med J 130:566–573. https://doi.org/10.4103/0366-6999.200550

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sonderegger S, Pollheimer J, Knofler M (2010) Wnt signalling in implantation, decidualisation and placental differentiation—review. Placenta 31:839–847. https://doi.org/10.1016/j.placenta.2010.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sood P, Krek A, Zavolan M, Macino G, Rajewsky N (2006) Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA 103:2746–2751. https://doi.org/10.1073/pnas.0511045103

    Article  CAS  PubMed  Google Scholar 

  36. Sørensen A, Wissing M, Salö S, Englund A, Dalgaard L (2014) MicroRNAs related to polycystic ovary syndrome (PCOS). Genes 5:684–708

    Article  Google Scholar 

  37. Stowe HM, Curry E, Calcatera SM, Krisher RL, Paczkowski M, Pratt SL (2012) Cloning and expression of porcine Dicer and the impact of developmental stage and culture conditions on MicroRNA expression in porcine embryos. Gene 501:198–205. https://doi.org/10.1016/j.gene.2012.03.058

    Article  CAS  PubMed  Google Scholar 

  38. Wang L et al (2013) Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development. PLoS ONE 8:e63173. https://doi.org/10.1371/journal.pone.0063173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang W, Luo Y-P (2015) MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B 16:18–31. https://doi.org/10.1631/jzus.B1400184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xia H-F, Jin X-H, Song P-P, Cui Y, Liu C-M, Ma X (2010) Temporal and spatial regulation of miR-320 in the uterus during embryo implantation in the rat. Int J Mol Sci 11:719–730. https://doi.org/10.3390/ijms11020719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xie H et al (2008) Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development (Camb Engl) 135:717–727. https://doi.org/10.1242/dev.015339

    Article  CAS  Google Scholar 

  42. Yang Q et al (2018) Association of the peripheral blood levels of circulating microRNAs with both recurrent miscarriage and the outcomes of embryo transfer in an in vitro fertilization process. J Transl Med 16:186. https://doi.org/10.1186/s12967-018-1556-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang H et al (2014) microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries. Reproduction (Camb Engl) 148:43–54. https://doi.org/10.1530/rep-13-0508

    Article  CAS  Google Scholar 

  44. Zhou J et al (2015) MicroRNA-320b promotes colorectal cancer proliferation and invasion by competing with its homologous microRNA-320a. Cancer Lett 356:669–675. https://doi.org/10.1016/j.canlet.2014.10.014

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rande Dzay.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving humans were in accordance with the Ethical Standards set by the Committee of Ethical Standards of Salahaddin University-Erbil.

Informed consent

Written consent form was filled by all the subjects included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzay, R., Mustafa, S. mir-320b rs755613466 T>C and mir-27a rs780199251 G>A polymorphisms and the risk of IVF failure in Kurdish women. Mol Biol Rep 47, 1751–1758 (2020). https://doi.org/10.1007/s11033-020-05266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05266-0

Keywords

Navigation