Skip to main content
Log in

Detection of antibiotic resistance profiles and aminoglycoside-modifying enzyme (AME) genes in high-level aminoglycoside-resistant (HLAR) enterococci isolated from raw milk and traditional cheeses in Turkey

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of this study was isolation and identification of the high-level aminoglycoside-resistant (HLAR) enterococci in raw milk and dairy products and to analyze their antibiotic resistance and the presence of aminoglycoside-modifying enzyme (AME) genes. A total of 59 HLAR enterococci were isolated from raw milk and traditional cheese samples. Thirty-nine of the 59 HLAR enterococci were isolated on streptomycin-containing agar medium, while the other 20 HLAR strains were isolated on gentamicin containing agar medium. The 59 HLAR enterococci were identified as 26 E. faecalis (44.07%), 18 E. faecium (30.51%), 13 E. durans (22.03%), and two E. gallinarum (3.39%) by species-specific PCR. Disk diffusion tests showed that teicoplanin were the most effective antibiotics used in this study, while 89.83% of isolates were found to be resistant to tetracycline. High rates of multiple antibiotic resistance were detected in HLAR isolates. Minimum inhibitory concentration (MIC) values of HLAR enterococci against streptomycin and gentamicin were found in the range of 64 to > 4096 µg/mL. Forty-seven (79.66%) of the 59 HLAR enterococci were found to be both high-level streptomycin-resistant (HLSR) and high-level gentamicin-resistant (HLGR) by MIC tests. However, no correlation was found between the results of the disk diffusion and MIC tests for gentamicin and streptomycin in some HLAR strains. The aph(3ʹ)-IIIa (94.92%) was found to be most prevalent AME gene followed by ant(4ʹ)-Ia (45.76%), ant(6ʹ)-Ia (20.34%) and aph(2ʹʹ)-Ic (10.17%). None of the isolates contained the aac(6ʹ)-Ie-aph(2ʹʹ)-Ia, aph(2ʹʹ)-Ib or aph(2ʹʹ)-Id genes. None of the AME-encoding genes were identified in E. durans RG20.1, E. faecalis RG22.4, or RG26.1. In conclusion, HLAR enterococci strains isolated in this study may act as reservoirs in the dissemination of antibiotic resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cariolato D, Andrighetto C, Lombardi A (2008) Occurrence of virulence factors and antibiotic resistances in Enterococcus faecalis and Enterococcus faecium collected from dairy and human samples in North Italy. Food Control 19:886–892

    Article  CAS  Google Scholar 

  2. Foulquié Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24

    Article  PubMed  Google Scholar 

  3. Chajęcka-Wierzchowska W, Zadernowska A, Łaniewska-Trokenheim Ł (2016) Virulence factors, antimicrobial resistance and biofilm formation in Enterococcus spp. Isolated from retail shrimps. LWT-Food Sci Technol 69:117–122

    Article  CAS  Google Scholar 

  4. Inoğlu Z, Tuncer Y (2013) Safety assessment of Enterococcus faecium and Enterococcus faecalis strains isolated from Turkish tulum cheese. J Food Safety 33:369–377

    Article  CAS  Google Scholar 

  5. Demirgül F, Tuncer Y (2017) Detection of antibiotic resistance and resistance genes in enterococci isolated from sucuk, a traditional Turkish dry-fermented sausage. Korean J Food Sci An 37(5):670–681

    Article  Google Scholar 

  6. Franz CMAP, Stiles ME, Schleifer KH, Holzapfel WH (2003) Enterococci in foods-a conundrum for food safety. Int J Food Microbiol 88:105–122

    Article  CAS  PubMed  Google Scholar 

  7. Garrido AM, Gálvez A, Pulido RP (2014) Antimicrobial resistance in enterococci. J Infect Dis 2:1–7

    Article  Google Scholar 

  8. Ferri M, Ranucci E, Romagnoli P, Giaccone V (2017) Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nut 57(13):2857–2876

    Article  CAS  Google Scholar 

  9. Sparo M, Delpech G, Garcia Allende N (2018) Impact on public health of the spread on high-level resistance to gentamicin and vancomycin in enterococci. Front Microbiol 9:3073. https://doi.org/10.3389/fmicb.2018.03073

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria a review. Int J Food Microbiol 105:281–295

    Article  CAS  PubMed  Google Scholar 

  11. Anonymous (2006) Yem katkıları ve premikslerin üretimi, ithalatı, ihracatı, satışı ve kullanımı hakkında tebliğde değişiklik yapılmasına dair tebliğ. Tarım ve Köyişleri Bakanlığından. Resmi Gazete 21 Ocak 2006. Sayı: 26056 Tebliğ No: 2006/1

  12. Choi J-M, Woo G-J (2013) Molecular characterization of high-level gentamicin-resistant Enterococcus faecalis from chicken meat in Korea. Int J Food Microbiol 165:1–6

    Article  CAS  PubMed  Google Scholar 

  13. Lan YF, Zhang Li K, Huang SC, Rehman MU, Zhang LH, Luo HQ, Wang L, Han ZQ, Shahzad M, Li JK (2016) Prevalence of high-level aminoglycoside resistant enterococci isolated from Tibetan pigs. Pak Vet J 36(4):503–505

    CAS  Google Scholar 

  14. Niu H, Yu H, Hu T, Tian G, Zhang L, Guo X, Hu H, Wang Z (2016) The prevalence of aminoglycoside-modifying enzyme and virulence genes among enterococci with high-level aminoglycoside resistance in Inner Mongolia, China. Braz J Microbiol 47:691–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shete V, Grover N, Kumar M (2017) Analysis of aminoglycoside modifying enzyme genes responsible for high-level aminoglycoside resistance among enterococcal isolates. J Pathog 2017:5. https://doi.org/10.1155/2017/3256952

    Article  CAS  Google Scholar 

  16. Jaimee G, Halami PM (2016) High-level aminoglycoside resistance in Enterococcus, Pediococcus and Lactobacillus species from farm animals and commercial meat products. Ann Microbiol 66:101–110

    Article  CAS  Google Scholar 

  17. Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updat 13:151–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bismuth R, Courvalin P (2010) Aminoglycosides and Gram-Positive Bacteria: Antibiogram, 3rd edn. ESKA, Portland

    Google Scholar 

  19. Pourcel G, Sparo M, Corso A, Delpech G, Gagetti P, de Luca MM, Bernstein J, Schell C, Lissarrague S, Basualdo JA (2017) Molecular genetic profiling of clinical and foodborne strains of enterococci with high level resistance to gentamicin and vancomycin. Clin Microbiol 6:272. https://doi.org/10.4172/2327-5073.1000272

    Article  CAS  Google Scholar 

  20. Vakulenko SB, Donabedian SM, Voskresenskiy AM, Zervos MJ, Lerner SA, Chow JW (2003) Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob Agents Chemother 47:1423–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cancilla MR, Powell LB, Hillier AJ, Davidson BE (1992) Rapid genomic fingerprinting of Lactococcus lastis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Appl Environ Microbiol 58:1772–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morandi S, Brasca M, Andrighetto C, Lombardi A, Lodi R (2006) Technological and molecular characterisation of enterococci isolated from North-West Italian dairy products. Int Dairy J 16:867–875

    Article  CAS  Google Scholar 

  23. Sahoo TK, Jena PK, Nagar N, Patel AK, Seshadri S (2005) In vitro evaluation of probiotic properties of lactic acid bacteria from the gut of Labeo rohita and Catla catla. Probiotics Antimicro Prot 7:126–136

    Article  CAS  Google Scholar 

  24. Jackson CR, Fedorka-Cray PJ, Barrett JB (2004) Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol 42(8):3558–3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yogurtcu NN, Tuncer Y (2013) Antibiotic susceptibility patterns of Enterococcus strains isolated from Turkish Tulum cheese. Int J Dairy Technol 66:236–242

    Article  CAS  Google Scholar 

  26. Clinical and Laboratory Standards Institute (CLSI) 2016. Performance standards for antimicrobial susceptibility testing, twenty-six informational supplement. M100-S26, Wayne, PA, USA

  27. Poyart C, Quesnes G, Trieu-cuot P (2000) Sequencing the gene encoding manganese-dependent superoxide dismutase for rapid species identification enterococci. J Clin Microbiol 38:415–418

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bouymajane A, Filali FR, Oulghazi S, Ed-dra A, Benhallam F, El Allaoui A, Anissi J, Sendide K, Ouhmidou B, Moumni M (2018). Occurrence, molecular and antimicrobial resistance of Enterococcus spp. isolated from raw cow’s milk trade by street trading in Meknes city, Morocco. GERMS 8(2):77-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tuncer M, Özden Tuncer B, Tuncer Y (2014) Safety evaluation of enterocin B producer Enterococcus faecalis MYE58 strain isolated from raw milk. Gıda 39(5):275–282

    Google Scholar 

  30. Avcı M, Özden B (2017) Safety evaluation of enterocin producer Enterococcus spp. strains isolated from traditional Turkish cheeses. Pol J Microbiol 66(2):223–233

    Article  PubMed  Google Scholar 

  31. Kürekci C, Önen Pehlivanlar S, Yipel M, Aslantaş Ö, Gündoğdu A (2016) Characterisation of phenotypic and genotypic antibiotic resistance profile of enterococci from cheeses in Turkey. Korean J Food Sci An 36(3):352–358

    Article  Google Scholar 

  32. Russo N, Caggia C, Pino A, Teresa MC, Arioli S, Randazzo CL (2018) Enterococcus spp. in Ragusano PDO and Pecorino Siciliano cheese types: a snapshot of their antibiotic resistance distribution. Food Chem Toxicol 120:277–286

    Article  CAS  PubMed  Google Scholar 

  33. Sanlibaba P, Senturk E (2018) Prevalence, characterization and antibiotic resistance of enterococci from traditional cheeses in Turkey. Int J Food Prop 21(1):1955–1963

    Article  CAS  Google Scholar 

  34. Amini F, Krimpour HA, Ghaderi M, Vaziri S, Ferdowsi S, Azizi M, Amini S (2018) Prevalence of aminoglycoside resistance genes in Enterococcus strains in Kermanshah. Iran. Iran J Med Sci 43(5):487–493

    Google Scholar 

  35. El-Ghazawy IF, Okasha HAS, Mazloum SM (2016) A study of high level aminoglycoside resistant enterococci. Afr J Microbiol Res 10(16):572–577

    Article  CAS  Google Scholar 

  36. Mendiratta DK, Kaur H, Deotale V, Thamke DC, Narang R, Narang P (2008) Status of high level aminoglycoside resistant Enterococcus faecium and Enterococcus faecalis in a rural hospital of central India. Indian J Microbiol 26:369–371

    Article  CAS  Google Scholar 

  37. Bi R, Qin T, Fan W, Ma P, Gu B (2018) The emerging problem of linezolid-resistant enterococci. J Glob Antimicrob Re 13:11–19

    Article  Google Scholar 

  38. Fard RMN, Heuzenroeder MW, Barton MD (2011) Antimicrobial and heavy metal resistance in commensal enterococci isolated from pigs. Vet Microbiol 148:276–282

    Article  CAS  PubMed  Google Scholar 

  39. Yüceer Ö, Özden Tuncer B (2015) Determination of antibiotic resistance and biogenic amine production of lactic acid bacteria isolated from fermented Turkish sausage (sucuk). J Food Safety 35:276–285

    Article  CAS  Google Scholar 

  40. Agarwal J, Kalyan R, Singh M (2009) High-level aminoglycoside resistance and beta-lactamase production in enterococci at a tertiary care hospital in India. Jpn J Infect Dis 62:158–159

    PubMed  Google Scholar 

  41. Jain S, Kumar A, Kashyap B, Kaur IR (2011) Clinico-epidemiological profile and high-level aminoglycoside resistance in enterococcal septicemia from a tertiary care hospital in East Delhi. Int J Appl Basic Med Res 1:80–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jyothi P, Metri B, Peerapur B (2014) High level resistance to aminoglycosides in urinary isolates of enterococci. Ann Med Health Sci Res 4(1):58–59

    Google Scholar 

  43. Akers KS, Chaney C, Barsoumian A, Beckius M, Zera W, Yu X, Guymon C, Keen EF III, Robinson BJ, Mende K, Murray CK (2010) Aminoglycoside resistance and susceptibility testing errors in Acinetobacter baumannii-calcoaceticus complex. J Clin Microbiol 48(4):1132–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hope R, Mushtaq S, James D, Pllana T, Warner M, Livermore DM (2010) Tigecycline susceptibility testing group. Tigecycline activity: low resistance rates but problematic disc breakpoints revealed by a multicentre sentinel survey in the UK. J Antimicrob Chemother 65:2602–2609

    Article  CAS  PubMed  Google Scholar 

  45. İşeri L, Şahin E, Dolapçı İ, Yürüken Z (2016) Minimum inhibitory concentration values and problematic disk break points of tigecycline against vancomycin and/or high-level aminoglycoside-resistant enterococci. Alexandria J Med 52:125–129

    Article  Google Scholar 

  46. Liu JW, Ko WC, Huang CH, Liao CH, Lu CT, Chuang YC, Tsao SM, Chen YS, Liu YC, Chen WY, Jang TN, Lin HC, Chen CM, Shi ZY, Pan SC, Yang JL, Kung HC, Liu CE, Cheng YJ, Chen YH, Lu PL, Sun W, Wang LS, Yu KW, Chiang PC, Lee MH, Lee CM, Hsu GJ, Hsueh PR (2012) Agreement assessment of tigecycline susceptibilities determined by the disc diffusion and broth micro dilution methods among commonly encountered resistant bacterial isolates: results from the tigecycline in vitro surveillance in Taiwan (TIST) study, 2008 to 2010. Antimicrob Agents Chemother 56(3):1414–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oliviera M, Santos V, Fernandes A, Nunes SF, Bernardo F, Vilela CL (2010) Pitfalls of antimicrobial susceptibility testing of enterococci isolated from farming broilers by disk diffusion method. Current Research, Technology and Education Topics in Applied Microbiology and Microbial biotechnology (A. Méndez-Vilas Ed). Formatex

  48. Feizabadi MM, Maleknejad P, Asgharzadeh A, Asadi S, Shokrzadeh L, Sayadi S (2006) Prevalence of aminoglycoside-modifying enzymes genes among isolates of Enterococcus faecalis and Enterococcus faecium in Iran. Microb Drug Resist 12:265–268

    Article  CAS  PubMed  Google Scholar 

  49. Jamet E, Akary E, Poisson MA, Chamba JF, Bertrand X, Serror P (2012) Prevalence and characterization of antibiotic resistant Enterococcus faecalis in French cheeses. Food Microbiol 31:191–198

    Article  CAS  PubMed  Google Scholar 

  50. Khani M, Fatollahzade M, Pajavand H, Bakhtiari S, Abiri R (2016) Increasing prevalence of aminoglycoside-resistant Enterococcus faecalis isolates due to the aac(6’)-aph(2”) gene: a therapeutic problem in Kermanshah. Iran. Jundishapur J Microbiol 9(3):1–5

    Google Scholar 

  51. Ramin B, Asadpour L, Tehrani HF, Amirmozafari N (2017) Detection and distribution of various HLAR gene in Enterococcus faecalis and Enterococcus faecium by multiplex-PCR. Mod Med Lab J 1(2):68–76

    Article  Google Scholar 

  52. Li W, Li J, Wei Q, Hu Q, Lin X, Chen M, Ye R, Lv H (2015) Characterization of aminoglycoside resistance and virulence genes among Enterococcus spp. isolated from a hospital in China. Int J Environ Res Public Health 12:3014–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Project No. 4739-YL1-16 from the Scientific Research Fund of the Süleyman Demirel University.

Author information

Authors and Affiliations

Authors

Contributions

RÖ isolated the bacteria. RÖ and YT, performed experiments and data analysis. RÖ and YT designed experiments. YT wrote the paper.

Corresponding author

Correspondence to Yasin Tuncer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, R., Tuncer, Y. Detection of antibiotic resistance profiles and aminoglycoside-modifying enzyme (AME) genes in high-level aminoglycoside-resistant (HLAR) enterococci isolated from raw milk and traditional cheeses in Turkey. Mol Biol Rep 47, 1703–1712 (2020). https://doi.org/10.1007/s11033-020-05262-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05262-4

Keywords

Navigation