Skip to main content
Log in

Investigating molecular evolutionary forces and phylogenetic relationships among melatonin precursor-encoding genes of different plant species

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A total of 53 plant species accessions from different geographic regions, including four melatonin precursor-coding genes obtained from Arachis hypogaea (ASMT1, 2, 3 and T5H) underwent extensive molecular evolutionary analyses. Evolutionary relationships were inferred and showed that dichotomous bifurcating trees did not reflect the true phylogeny since reticulate events took place due likely to recombination. Thus, a phylogenetic network was reconstructed for each type of enzyme and highlighted the presence of such incompatibilities. GARD algorithm pointed out that ASMT1, 2, and 3-coding gene sequences contained recombination sites with significant topological incongruence on both sides of the breakpoints (for ASMT1, and 2), while only on one side of the breakpoints for ASMT3. In contrast, no statistically recombination signal was recorded in T5H-coding gene. Furthermore, gene duplication was localized in the ancestor of a monophyletic group of Populus accessions. Selection pressure was assessed using several statistical models incorporated in HyPhy package through the datamonkey web server. It was demonstrated that numerous individual sites and tree branches experienced predominantly purifying selection. In contrast, the BUSTED model evidenced a gene-wide episodic diversifying selection in the phylogeny of only three enzyme-coding genes (ASMT, and 2, and T5H). Likewise, it was shown that Mixed Effects Model of Episodic Selection (MEME) model detected only episodic positively selected sites in all four melatonin enzymes-coding genes; whereas, REL model failed to detect neither positive nor negative selection in tested individual sites of ASMT3-coding gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ehrlich SD, Bierne H, d'Alençon E, Vilette D, Petranovic M, Noirot P, Michel B (1993) Mechanisms of illegitimate recombination. Gene 135(1–2):161–166

    Article  CAS  PubMed  Google Scholar 

  2. Rand DM, Kann LM (1998) Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Mutation and evolution. Springer, Dordrecht, pp 393–407

    Chapter  Google Scholar 

  3. Wei J, Li DX, Zhang JR, Shan C, Rengel Z, Song ZB, Chen Q (2018) Phytomelatonin receptor PMTR 1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res 65:12500. https://doi.org/10.1111/jpi.12500

    Article  CAS  Google Scholar 

  4. Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ (2019) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol. https://doi.org/10.3389/fendo.2019.00249

    Article  Google Scholar 

  5. Tan D-X et al (2014) Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int J Mol Sci 15:15858–15890. https://doi.org/10.3390/ijms150915858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular 347:22

  7. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci 85:2444–2448. https://doi.org/10.1073/pnas.85.8.2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  9. Altschul SF, Boguski MS, Gish W, Wootton JC (1994) Issues in searching molecular sequence databases. Nat Genet 6:119

    Article  CAS  PubMed  Google Scholar 

  10. Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  11. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Mol Biol Evol 9:678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752

    Article  CAS  PubMed  Google Scholar 

  13. Huson DH, Bryant D (2005) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. https://doi.org/10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  14. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901. https://doi.org/10.1093/molbev/msl051

    Article  PubMed  Google Scholar 

  15. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) GARD: a genetic algorithm for recombination detection. Bioinformatics 22:3096–3098. https://doi.org/10.1093/bioinformatics/btl474

    Article  CAS  PubMed  Google Scholar 

  16. Akaike H (1974) A new look at the statistical model identification. Selected Papers of Hirotugu Akaike. Springer, New York, pp 215–222

    Chapter  Google Scholar 

  17. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  CAS  PubMed  Google Scholar 

  18. Pond SLK, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Statistical methods in molecular evolution. Springer, New York, pp 125–181

    Chapter  Google Scholar 

  19. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. https://doi.org/10.1093/bioinformatics/btg359

    Article  CAS  PubMed  Google Scholar 

  20. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Korber B (2002) HIV sequence sigmatires and similarities. Computational and evolutionary analysis of HIV molecular sequences. Springer, Boston, pp 55–72

    Chapter  Google Scholar 

  23. Pond SLK, Frost SD (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533. https://doi.org/10.1093/bioinformatics/bti320

    Article  CAS  PubMed  Google Scholar 

  24. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764. https://doi.org/10.1371/journal.pgen.1002764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205. https://doi.org/10.1093/molbev/mst030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scheffler K, Martin DP, Seoighe C (2006) Robust inference of positive selection from recombining coding sequences. Bioinformatics 22:2493–2499. https://doi.org/10.1093/bioinformatics/btl427

    Article  CAS  PubMed  Google Scholar 

  27. Delport W, Poon AF, Frost SD, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457. https://doi.org/10.1093/bioinformatics/btq429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pond SLK, Frost SD (2004) A genetic algorithm approach to detecting lineage-specific variation in selection pressure. Mol Biol Evol 22:478–485. https://doi.org/10.1093/molbev/msi031

    Article  CAS  PubMed  Google Scholar 

  29. Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL (2015) Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32:1342–1353. https://doi.org/10.1093/molbev/msv022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S, Aylward A, Eren K, Pollner T, Martin DP, Smith DM, Scheffler K, Kosakovsky Pond SL (2015) Gene-wide identification of episodic selection. Mol Biol Evol 32:1365–1371. https://doi.org/10.1093/molbev/msv035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bapteste E et al (2013) Networks: expanding evolutionary thinking. Trends Genet 29:439–441. https://doi.org/10.1016/j.tig.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  32. Sugiura N (1978) Further analysts of the data by akaike's information criterion and the finite corrections: further analysts of the data by akaike's. Commun Stat Theory Methods 7:13–26. https://doi.org/10.1080/03610927808827599

    Article  Google Scholar 

  33. Pond SLK, Frost SD, Grossman Z, Gravenor MB, Richman DD, Brown AJL (2006) Adaptation to different human populations by HIV-1 revealed by codon-based analyses. PLoS Comput Biol 2:e62. https://doi.org/10.1371/journal.pcbi.0020062

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Li H, Yao Y, Liu W, Ni Q, Zhang M, Xu H (2015) Uneven evolutionary rate of the melatonin-related receptor gene (GPR50) in primates. Genet Mol Res 14:680–690. https://doi.org/10.4238/2015.January.30.11

    Article  CAS  PubMed  Google Scholar 

  35. Xu J et al (2019) Molecular evolution of tryptophan hydroxylases in vertebrates: a comparative genomic survey. Genes 10:203. https://doi.org/10.3390/genes10030203

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Egyptian government for granting a visiting scholarship and the Zagazig University for supporting the research.

Author information

Authors and Affiliations

Authors

Contributions

MB, AE and AAO conceived and directed this work, designed the experiments, analyzed the data, wrote and revised the manuscript. AIE, and AAO supported PCR and cloning analysis. MSR provided suggestions and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abdelaleim Ismail ElSayed.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulila, M., ElSayed, A.I., Rafudeen, M.S. et al. Investigating molecular evolutionary forces and phylogenetic relationships among melatonin precursor-encoding genes of different plant species. Mol Biol Rep 47, 1625–1636 (2020). https://doi.org/10.1007/s11033-020-05249-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05249-1

Keywords

Navigation