Skip to main content
Log in

LPS impairs steroidogenesis and ROS metabolism and induces PPAR transcriptional activity to disturb estrogen/androgen receptor expression in testicular cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Inflammation can deregulate the testicular functions of steroidogenesis and spermatogenesis, consequently contributing to male infertility. Animals and cells treated with lipopolysaccharide (LPS) exhibit infection- and inflammation-induced testicular dysfunction. However, the precise mechanisms affecting steroidogenesis and spermatogenesis in response to LPS-treatment remain poorly understood. We isolated distinct testicular cells including spermatocytes, round spermatids and late spermatids to analyze distribution of peroxisome proliferator-activated receptor (PPAR) family, plays central roles in the regulation of metabolism. Our results suggested Pparα/Pparγ mRNA was highly expressed in late spermatids, while Pparβ mRNA was highly expressed in round spermatids. To analyze the effect of LPS on testicular cells, we established an LPS infection model using primary Sertoli cells and testicular cell lines (TM4, GC2 and MLTC1). We observed that PPARγ and SIRT1 were concentrated in the nuclear region and that the mRNA expression levels of antioxidative enzymes (Cat and Homx1) and PPARγ were upregulated in primary Sertoli cells after LPS-treatment. Moreover, luciferase reporter gene assays of the testicular cell lines revealed that the activity of the PPAR response element (PPRE) was significantly increased. Importantly, the transcriptional activity of the androgen response element was significantly reduced, whereas activity of estrogen response element was strongly induced in LPS-treated TM4 cells, consistent with the RT-PCR results. Meanwhile, the qRT-PCR results revealed that the LPS-induced upregulation of Ar mRNA in MLTC1 cells and Erβ mRNA in TM4 cells were significantly recovered after treatment with the specific PPARγ-antagonist GW9662. In addition, we also found that LPS induced alterations in enzymes involved in steroidogenesis in testicular cell lines. Taken together, our results revealed that LPS may induce PPAR transcriptional activity to disturb estrogen/androgen receptor expression and impair steroidogenesis and ROS metabolism in testicular cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ANOVA:

Analysis of variance

AR:

Androgen receptor

ARE:

Antioxidant response element

ELISA:

Enzyme-linked immunosorbent assay

ER:

Estrogen receptor

ERE:

Estrogen response element

FBS:

Fetal bovine serum

FSH:

Follicle-stimulating hormone

HO-1:

Heme oxygenase-1

Lhr:

Luteinizing hormone receptor

LPS:

Lipopolysaccharide

NRs:

Nuclear receptors

OS:

Oxidative stress

PCRs:

Polymerase chain reactions

PFA:

Paraformaldehyde

PPAR:

Peroxisome proliferator-activated receptor

PPRE:

PPAR response element

PUFAs:

Polyunsaturated fatty acids

qRT-PCR:

Quantitative real-time PCR

ROS:

Reactive oxygen species

RT:

Room temperature

SCs:

Sertoli cells

SIRT1:

Silent information regulator type 1

References

  1. Leaver RB (2016) Male infertility: an overview of causes and treatment options. Br J Nurs 25(18):S35–s40. https://doi.org/10.12968/bjon.2016.25.18.S35

    Article  PubMed  Google Scholar 

  2. Azenabor A, Ekun AO, Akinloye O (2015) Impact of inflammation on male reproductive tract. J Reprod Infertil 16(3):123–129

    PubMed  PubMed Central  Google Scholar 

  3. Bachir BG, Jarvi K (2014) Infectious, inflammatory, and immunologic conditions resulting in male infertility. Urol Clin N Am 41(1):67–81. https://doi.org/10.1016/j.ucl.2013.08.008

    Article  Google Scholar 

  4. Sarkar O, Bahrainwala J, Chandrasekaran S, Kothari S, Mathur PP, Agarwal A (2011) Impact of inflammation on male fertility. Front Biosci 3:89–95

    Google Scholar 

  5. O’Bryan MK, Schlatt S, Phillips DJ, de Kretser DM, Hedger MP (2000) Bacterial lipopolysaccharide-induced inflammation compromises testicular function at multiple levels in vivo. Endocrinology 141(1):238–246. https://doi.org/10.1210/endo.141.1.7240

    Article  PubMed  Google Scholar 

  6. Ramatchandirin B, Sadasivam M, Kannan A, Prahalathan C (2016) Sirtuin 4 regulates lipopolysaccharide mediated leydig cell dysfunction. J Cell Biochem 117(4):904–916. https://doi.org/10.1002/jcb.25374

    Article  CAS  PubMed  Google Scholar 

  7. Sadasivam M, Ramatchandirin B, Ayyanar A, Prahalathan C (2014) Bacterial lipopolysaccharide differently modulates steroidogenic enzymes gene expressions in the brain and testis in rats. Neurosci Res 83:81–88. https://doi.org/10.1016/j.neures.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  8. Bosmann HB, Hales KH, Li X, Liu Z, Stocco DM, Hales DB (1996) Acute in vivo inhibition of testosterone by endotoxin parallels loss of steroidogenic acute regulatory (StAR) protein in Leydig cells. Endocrinology 137(10):4522–4525. https://doi.org/10.1210/endo.137.10.8828518

    Article  CAS  PubMed  Google Scholar 

  9. Allen JA, Diemer T, Janus P, Hales KH, Hales DB (2004) Bacterial endotoxin lipopolysaccharide and reactive oxygen species inhibit Leydig cell steroidogenesis via perturbation of mitochondria. Endocrine 25(3):265–275. https://doi.org/10.1385/endo:25:3:265

    Article  CAS  PubMed  Google Scholar 

  10. Metukuri MR, Reddy CM, Reddy PR, Reddanna P (2010) Bacterial LPS-mediated acute inflammation-induced spermatogenic failure in rats: role of stress response proteins and mitochondrial dysfunction. Inflammation 33(4):235–243. https://doi.org/10.1007/s10753-009-9177-4

    Article  CAS  PubMed  Google Scholar 

  11. Reddy MM, Mahipal SV, Subhashini J, Reddy MC, Roy KR, Reddy GV, Reddy PR, Reddanna P (2006) Bacterial lipopolysaccharide-induced oxidative stress in the impairment of steroidogenesis and spermatogenesis in rats. Reprod Toxicol (Elmsford, NY) 22(3):493–500. https://doi.org/10.1016/j.reprotox.2006.03.003

    Article  CAS  Google Scholar 

  12. Taken K, Alp HH, Eryilmaz R, Donmez MI, Demir M, Gunes M, Aslan R, Sekeroglu MR (2016) Oxidative DNA damage to sperm cells and peripheral blood leukocytes in infertile men. Med Sci Monit 22:4289–4296. https://doi.org/10.12659/msm.898631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lemberger T, Braissant O, Juge-Aubry C, Keller H, Saladin R, Staels B, Auwerx J, Burger AG, Meier CA, Wahli W (1996) PPAR tissue distribution and interactions with other hormone-signaling pathways. Ann N Y Acad Sci 804:231–251. https://doi.org/10.1111/j.1749-6632.1996.tb18619.x

    Article  CAS  PubMed  Google Scholar 

  14. Belfiore A, Genua M, Malaguarnera R (2009) PPAR-gamma agonists and their effects on IGF-I receptor signaling: implications for cancer. PPAR Res 2009:830501. https://doi.org/10.1155/2009/830501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435. https://doi.org/10.1146/annurev.med.53.082901.104018

    Article  CAS  PubMed  Google Scholar 

  16. Latruffe N, Cherkaoui Malki M, Nicolas-Frances V, Clemencet MC, Jannin B, Berlot JP (2000) Regulation of the peroxisomal beta-oxidation-dependent pathway by peroxisome proliferator-activated receptor alpha and kinases. Biochem Pharmacol 60(8):1027–1032. https://doi.org/10.1016/s0006-2952(00)00416-0

    Article  CAS  PubMed  Google Scholar 

  17. Karnati S, Baumgart-Vogt E (2008) Peroxisomes in mouse and human lung: their involvement in pulmonary lipid metabolism. Histochem Cell Biol 130(4):719–740. https://doi.org/10.1007/s00418-008-0462-3

    Article  CAS  PubMed  Google Scholar 

  18. Michalik L, Wahli W (2007) Guiding ligands to nuclear receptors. Cell 129(4):649–651. https://doi.org/10.1016/j.cell.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  19. Jiang X, Ye X, Guo W, Lu H, Gao Z (2014) Inhibition of HDAC3 promotes ligand-independent PPARgamma activation by protein acetylation. J Mol Endocrinol 53(2):191–200. https://doi.org/10.1530/jme-14-0066

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9(2):162–176. https://doi.org/10.1038/nrm2335

    Article  CAS  PubMed  Google Scholar 

  21. Gorowska E, Dutka P, Kudrycka M, Pawlicki P, Milon A, Plachno BJ, Tworzydlo W, Pardyak L, Kaminska A, Hejmej A, Bilinska B, Kotula M (2018) Regulation of steroidogenic function of mouse Leydig cells: G-coupled membrane estrogen receptor and peroxisome proliferator-activated receptor partnership. J Physiol Pharmacol 69(3):373–390. https://doi.org/10.26402/jpp.2018.3.04

    Article  Google Scholar 

  22. Guo X, Kesimer M, Tolun G, Zheng X, Xu Q, Lu J, Sheehan JK, Griffith JD, Li X (2012) The NAD(+)-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status. Sci Rep 2:640. https://doi.org/10.1038/srep00640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Ann Rev Pathol 5:253–295. https://doi.org/10.1146/annurev.pathol.4.110807.092250

    Article  CAS  Google Scholar 

  24. Yang T, Fu M, Pestell R, Sauve AA (2006) SIRT1 and endocrine signaling. Trends Endocrinol Metab 17(5):186–191. https://doi.org/10.1016/j.tem.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  25. Han L, Zhou R, Niu J, McNutt MA, Wang P, Tong T (2010) SIRT1 is regulated by a PPAR{gamma}-SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res 38(21):7458–7471. https://doi.org/10.1093/nar/gkq609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nenicu A, Luers GH, Kovacs W, David M, Zimmer A, Bergmann M, Baumgart-Vogt E (2007) Peroxisomes in human and mouse testis: differential expression of peroxisomal proteins in germ cells and distinct somatic cell types of the testis. Biol Reprod 77(6):1060–1072. https://doi.org/10.1095/biolreprod.107.061242

    Article  CAS  PubMed  Google Scholar 

  27. Dastig S, Nenicu A, Otte DM, Zimmer A, Seitz J, Baumgart-Vogt E, Luers GH (2011) Germ cells of male mice express genes for peroxisomal metabolic pathways implicated in the regulation of spermatogenesis and the protection against oxidative stress. Histochem Cell Biol 136(4):413–425. https://doi.org/10.1007/s00418-011-0832-0

    Article  CAS  PubMed  Google Scholar 

  28. Park MH, Park JE, Kim MS, Lee KY, Park HJ, Yun JI, Choi JH, Lee E, Lee ST (2014) Development of a high-yield technique to isolate spermatogonial stem cells from porcine testes. J Assist Reprod Genet 31(8):983–991. https://doi.org/10.1007/s10815-014-0271-7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pawlikowski M, Fuss-Chmielewska J, Jaranowska M, Pisarek H, Kubiak R, Winczyk K (2015) Expression of follicle stimulating hormone receptors (FSHR) in thyroid tumours—a marker of malignancy? Thyroid Res 8(1):1. https://doi.org/10.1186/s13044-015-0014-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vachharajani VT, Liu T, Wang X, Hoth JJ, Yoza BK, McCall CE (2016) Sirtuins link inflammation and metabolism. J Immunol Res 2016:8167273. https://doi.org/10.1155/2016/8167273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rubio V, Zhang J, Valverde M, Rojas E, Shi ZZ (2011) Essential role of Nrf2 in protection against hydroquinone- and benzoquinone-induced cytotoxicity. Toxicol In Vitro 25(2):521–529. https://doi.org/10.1016/j.tiv.2010.10.021

    Article  CAS  PubMed  Google Scholar 

  32. Yeligar SM, Machida K, Kalra VK (2010) Ethanol-induced HO-1 and NQO1 are differentially regulated by HIF-1alpha and Nrf2 to attenuate inflammatory cytokine expression. J Biol Chem 285(46):35359–35373. https://doi.org/10.1074/jbc.M110.138636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sedha S, Kumar S, Shukla S (2015) Role of oxidative stress in male reproductive dysfunctions with reference to phthalate compounds. Urol J 12(5):2304–2316

    PubMed  Google Scholar 

  34. Asare GA, Bugyei K, Fiawoyi I, Asiedu-Gyekye IJ, Gyan B, Adjei S, Addo P, Otu-Nyarko L, Nyarko A (2013) Male rat hormone imbalance, testicular changes and toxicity associated with aqueous leaf extract of an antimalarial plant: Phyllanthus niruri. Pharm Biol 51(6):691–699. https://doi.org/10.3109/13880209.2013.764325

    Article  PubMed  Google Scholar 

  35. Pilutin A, Misiakiewicz-Has K, Kolasa A, Baranowska-Bosiacka I, Marchlewicz M, Wiszniewska B (2014) The immunoexpression of androgen receptor, estrogen receptors alpha and beta, vanilloid type 1 receptor and cytochrome p450 aromatase in rats testis chronically treated with letrozole, an aromatase inhibitor. Folia Histochem Cytobiol 52(3):206–217. https://doi.org/10.5603/fhc.2014.0024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of Yayun Fang and Danni Shan is gratefully acknowledged.

Funding

This work was supported by grants from the Health Commission of Hubei Province Scientific Research Project (Grant Nos. WJ2019H013 and WJ2019H023) and the Fundamental Research Funds for the Central Universities (Grant No. 2042019kf0150). The funders had no role in the study design, data collection, data analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GW, YX and LJ conceived of and designed the experiments; GW, SC and SZ performed the experiments; GW, YZ and YX analyzed the results; GW and SC contributed reagents/materials/analysis tools; GW, YX and LJ wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lingao Ju.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Cheng, S., Zhang, S. et al. LPS impairs steroidogenesis and ROS metabolism and induces PPAR transcriptional activity to disturb estrogen/androgen receptor expression in testicular cells. Mol Biol Rep 47, 1045–1056 (2020). https://doi.org/10.1007/s11033-019-05196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05196-6

Keywords

Navigation