Development of an anti-CD45RA-quantum dots conjugated scFv to detect leukemic cancer stem cells

Abstract

Leukemic cancer stem cells (LSCs), aberrantly overexpressing CD45RA are among the major causes of relapse following chemotherapy in patients with acute myeloid leukemia and serve as a highly sensitive marker for predicting relapse occurrence following chemotherapy. The main purpose of current study was to develop a sensitive approach for detecting LSCs based on a conjugate of an anti-CD45 scFv and quantum dot. The variable light and heavy chain sequences of a recently developed anti-CD45RA monoclonal antibody were derived from hybridoma cells and PCR amplified to construct scFv. Following insertion of scFv gene into a pET32a-lic vector and expression in Escherichia coli and purification, the purified scFv, was conjugated with carbon dots (C dots) and used for the detection of CD45RA +cells while CD45RA-cells served as negative control. Subsequently, Functional activity of the conjugate was analyzed by flow cytometry and ICC to detect the cell surface antigen binding and detection ability. Based on results, purified CD45RA scFv conjugated C dots could specifically recognize CD45RA positive cells, but not any CD45RA negative ones. In conclusion, here we developed a low-cost but very efficient approach for detection of CD45RA positive cells including LSCs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Rubnitz JE, Gibson B, Smith FO (2010) Acute myeloid leukemia. Hematol Oncol Clin North Am 24(1):35–63

    Article  Google Scholar 

  2. 2.

    Muñoz L et al (2001) Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica 86(12):1261–1269

    PubMed  Google Scholar 

  3. 3.

    Blair A, Hogge D, Sutherland H (1998) Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34+/CD71/HLA-DR. Blood 92(11):4325–4335

    CAS  Article  Google Scholar 

  4. 4.

    Gerber JM et al (2012) A clinically relevant population of leukemic CD34+ CD38- cells in acute myeloid leukemia. Blood 119(15):3571–3577

    CAS  Article  Google Scholar 

  5. 5.

    Terwijn M et al (2014) Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia. PLoS ONE 9(9):e107587

    Article  Google Scholar 

  6. 6.

    Becker MW, Jordan CT (2011) Leukemia stem cells in 2010: current understanding and future directions. Blood Rev 25(2):75–81

    CAS  Article  Google Scholar 

  7. 7.

    Hirsch R et al (1989) Effects of in vivo administration of anti-CD3 monoclonal antibody on T cell function in mice. II. In vivo activation of T cells. J Immunol 142(3):737–743

    CAS  PubMed  Google Scholar 

  8. 8.

    Goardon N et al (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19(1):138–152

    CAS  Article  Google Scholar 

  9. 9.

    Kersten B et al (2016) CD45RA, a specific marker for leukaemia stem cell sub-populations in acute myeloid leukaemia. Br J Haematol 173(2):219–235

    CAS  Article  Google Scholar 

  10. 10.

    Lin Y et al (2006) A genetically engineered anti-CD45 single-chain antibody-streptavidin fusion protein for pretargeted radioimmunotherapy of hematologic malignancies. Can Res 66(7):3884–3892

    CAS  Article  Google Scholar 

  11. 11.

    Hammers CM, Stanley JR (2014) Antibody phage display: technique and applications. J Invest Dermatol 134(2):e17

    CAS  Article  Google Scholar 

  12. 12.

    Bird RE et al (1988) Single-chain antigen-binding proteins. Science 242(4877):423–426

    CAS  Article  Google Scholar 

  13. 13.

    Pansri P et al (2009) A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotechnol 9(1):6

    Article  Google Scholar 

  14. 14.

    Yang ST et al (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C Nanomater Interfaces 113(42):18110–18114

    CAS  Article  Google Scholar 

  15. 15.

    Yang Z et al (2013) Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett 5(4):247–259

    Article  Google Scholar 

  16. 16.

    Shin HM et al (2011) Characterization of monoclonal antibodies against human leukocyte common antigen (CD45). Immune Netw 11(2):114–122

    Article  Google Scholar 

  17. 17.

    Han B et al (2012) Polyethyleneimine modified fluorescent carbon dots and their application in cell labeling. Colloids Surf B Biointerfaces 100:209–214

    CAS  Article  Google Scholar 

  18. 18.

    Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems: a review (part 2). Trop J Pharm Res 12(2):265–273

    Google Scholar 

  19. 19.

    Bhattacharjee S (2016) In relation to the following article “DLS and zeta potential-What they are and what they are not?” Journal of Controlled Release, 2016, 235, 337-351. J Control Release, 2016. 238: 311–312

  20. 20.

    Kersten B et al (2016) CD45RA, a specific marker for leukaemia stem cell sub-populations in acute myeloid leukaemia. Br J Haematol 173(2):219–235

    CAS  Article  Google Scholar 

  21. 21.

    Terwijn M et al (2013) High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol 31(31):3889–3897

    Article  Google Scholar 

  22. 22.

    Beckman RA, Weiner LM, Davis HM (2007) Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer 109(2):170–179

    CAS  Article  Google Scholar 

  23. 23.

    Moradi-Kalbolandi S et al (2016) Soluble expression and characterization of a new scfv directed to human CD123. Appl Biochem Biotechnol 178(7):1390–1406

    CAS  Article  Google Scholar 

  24. 24.

    Lin Y et al (2006) A genetically engineered anti-CD45 single-chain antibody-streptavidin fusion protein for pretargeted radio immunotherapy of hematologic malignancies. Cancer Res 66(7):3884–3892

    CAS  Article  Google Scholar 

  25. 25.

    Henson SM, Riddell NE, Akbar AN (2012) Properties of end-stage human T cells defined by CD45RA re-expression. Curr Opin Immunol 24(4):476–481

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leila Farahmand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moradi-Kalbolandi, S., Dashtestani, F., Salehi, M. et al. Development of an anti-CD45RA-quantum dots conjugated scFv to detect leukemic cancer stem cells. Mol Biol Rep 47, 225–234 (2020). https://doi.org/10.1007/s11033-019-05122-w

Download citation

Keywords

  • AML
  • CD45RA
  • scFv
  • Leukemic cancer stem cell
  • Carbon dots
  • Conjugation