Skip to main content

Advertisement

Log in

Efficacy, toxicity study and antioxidant properties of plantaricin E and F recombinants against enteropathogenic Escherichia coli K1.1 (EPEC K1.1)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Enteropathogenic Escherichia coli (EPEC) is one of the resistance bacteria towards antibiotics and have been raising problem during treatments. Therefore, a new antibiotic candidate is required. Plantaricin E and F recombinant have been successfully produced by a GRAS host Lactococcus lactis. This study was aimed to evaluate the efficacy and toxicity of plantaricin E and F recombinant against EPEC K1.1 infection by in vivo assay. The production of plantaricin E and F recombinants from Lactococcus lactis was conducted and encapsulated. The in vivo study was carried out by inoculating the mice perorally with EPEC K1.1 for 7 days then treated with 100, 250, and 500 mg/kg body weight/day of recombinant plantaricin E and F for another 7 days. The toxicity assay were observed in ddY mice using various concentrations of treatment (50, 100, 1000, and 5000 mg/kg/body weight) doses perorally for 48 h. The result showed that the plantaricin E and F recombinant were successfully produced in Lactococcus lactis expression host with 3.7 kDa and 3.8 kDa in size. The efficacy study revealed the optimal doses of plantaricin E and F recombinant against EPEC K1.1 infection was 250 mg/kgBW for plantaricin E and 500 mg/kgBW for plantaricin F. The plantarisin E and F recombinant treatment showed improvement in leukocyte, hematocrit, and hemoglobin levels as well in decreasing malondialdehyde (MDA) level. Observation of the intestine histopathology showed small amounts of mononuclear inflammatory cell infiltration than the other groups of treatment. The acute toxicity assay showed that there was no mortality observed during the assay, even after 5000 mg/kg body weight of plantarisin E and F recombinant treatment (LD50 > 5000 mg/KgBW). The hematological and biochemical observations showed normal levels in leukocytes, erythrocytes, hematocrit, hemoglobin, platelets, urea, creatinine, and alanine transaminase aspartate transaminase (SGOT and SGPT) while histopathological observation shows a picture of normal liver and kidney cells. This study confirmed the application of bacteriocin for further academic and industrial purposes as a non-toxic substance for food preservative and antibiotic candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhan MK, Bahl R, Bhatnagar S (2005) Typhoid and parathypoid fever. Lancet 366:749–762

    Article  CAS  Google Scholar 

  2. De Roos NM, Katan MB (2000) Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. AmJ Clin Nutr 71:405–411

    Article  Google Scholar 

  3. Depkes RI (2008) Survei Kesehatan Rumah Tangga (SKRT). Jakarta

  4. Kelleher BP, Leahy JJ, Henihan AM, O’Dwyer TF, Sutton D, Leahy MJ (2002) Advances in poultry litter disposal technology–a review. Bioresour Technol 83:27–36

    Article  CAS  Google Scholar 

  5. Nitisinprasert S, Pungsungworn N, Wanchaitanawong P, Loiseau G, Montet D (2006) In vitro adhesion assay of lactic acid bacteria, Escherichia coli and Salmonella sp. by microbiological and PCR methods. Songklanakarin J Sci Technol 28:99–106

    Google Scholar 

  6. World Health Organization (2017) WHO publishes list of bacteria for which new antibiotics are urgently needed. WHO, Geneva

    Google Scholar 

  7. Budiarti S (1998) Telaah faktor adhesivitas Escherichia coli enteropathogenic dalam penanggulangan penyakit diare di Indonesia. Laporan Penelitian Hibah Bersaing III. Jakarta. Perguruan Tinggi DIKTI

  8. Fong TH, Foo HL, Rahim RA, Loh TC, Abdullah MP, Yoshinobu K (2015) Molecular characterisation of new organisation of plnEF and plw loci of bacteriocin genes harbour concomitantly in Lactobacillusplantarum I-UL4. Microb Cell Fact 14:89. https://doi.org/10.1186/s12934-015-0280-y

    Article  CAS  Google Scholar 

  9. Fanqiang M, Zhu X, Lu F, Bie X, Lu Z (2016) Functional analysis of plantaricin E and its mutant by heterologous expression in Escherichia coli. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-016-2328-9

    Article  Google Scholar 

  10. Tomomi H, Tanaka R, Ohmomo S (2010) Isolation and characterization of plantaricin ASM1: a new bacteriocin produced by Lactobacillus plantarum A-1. Int J Food Microbiol 137:94–99

    Article  Google Scholar 

  11. Pal G, Sheela S (2014) Inhibitory effect of plantaricin peptides (Pln E/F and J/K) against Escherichia coli. Springer, Dordrecht

    Book  Google Scholar 

  12. Pal G, Sheela S (2013) Cloning and heterologous expression of plnE, -F, -J and –K genes derived from soil metagenome and purification of active plantaricin peptides. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-013-5097-1

    Article  PubMed  Google Scholar 

  13. Sharma A, Srivaltava S (2014) Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biol 118:264–275

    Article  CAS  Google Scholar 

  14. Mustopa AZ, Hasim D, Amelia S (2018) Pengaruh Suhu, pH, Enzim, dan Surfaktan terhadap Plantaricin F Rekombinan Enkapsulasi Sebagai Antibakteri Staphylococcus aureus dan Salmonella typhi. J Biol Indones 14:61–71

    Google Scholar 

  15. Mustopa AZ, Kusdianawati Fatimah, Umami RN, Budiarto RB, Danuri H (2016) Cloning and expression of plantaricin E and F genes of Lactobacillus plantarum S34 isolated from Indonesian traditional-fermented meat (Bekasam). IFRJ 23:762–769

    CAS  Google Scholar 

  16. Mustopa AZ, Murtiyaningsih H, Fatimah Suharsono (2016) Cloning and heterologous expression of extracellular plantaricin F produced by Lactobacillus plantarum S34 isolated from “Bekasam” in Lactococcus lactis. JMI 10:95–106

    Google Scholar 

  17. Mustopa AZ, Mariyah S, Fatimah Budiarti S, Hidayah M, Alfisyahrini WN (2018) Construction, heterologus expression, partial purification, and in vitro citotoxicity of recombinant plantaricin E produced by Lactococcus lactis againts Enteropathogenic Escherichia coli K1.1 and human cervical carcinoma (HeLa) cells. Mol Biol Rep 45(5):1235–1244. https://doi.org/10.1007/s11033-018-4277-6

    Article  CAS  PubMed  Google Scholar 

  18. Xie Y, An H, Hao Y, Qin Q, Huang Y, Luo Y, Zhang L (2011) Characterization of an anti-Listeria bacteriocin produced by Lactobacillus plantarum LB-B1 isolated from koumiss, a traditionally fermented dairy product from China. Food Control 22:1027–1031

    Article  CAS  Google Scholar 

  19. MoBiTec (2012) NICE: expressions system for Lactococcus lactis. MoBiTec GmbH, Germany (DE)

    Google Scholar 

  20. Borrero J, Jiménez JJ, Gútiez L, Herranz C, Cintas LM, Hernández PE (2011) Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria. J Biotechnol 156:76–86

    Article  CAS  Google Scholar 

  21. Arief I, Jakaria Suryati, Wulandari Z, Andreas E (2013) Isolation and characerization of plantaricin produced by L. plantarum strains (IIA-1A5, IIA-1B1, IIA-2B2). Media Peternak 3(2):91–100. https://doi.org/10.5398/medpet.2013.36.2.91

    Article  Google Scholar 

  22. Coman C, Vlase E (2017) Formulation, preparation and chemical analysis of purified diets for laboratory mice and rats. Sci Works 63(1):149–154

    Google Scholar 

  23. National Institutes of Health (1996) Guide for the care and use of laboratory animals. National Institutes of Health, Bethesda, pp 82–83

    Google Scholar 

  24. Zoumpopoulou G, Foligne B, Christodoulou K, Grange C, Pot B, Tsakalidou E (2008) Lactobacillus acidophilus ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models. IJFM 121:18–26

    CAS  Google Scholar 

  25. Vaucher Rde A, Gewehr CCV, Corre APF, Sant‘Anna V, Ferreira J, Brandelli A (2011) Evaluation of the immunogenicity and in vivo toxicity of the antimicrobial peptide P34. IJP 421:94–98

    Google Scholar 

  26. Tsai CC, Liu TH, Chen MH, Tsai CC, Tsen HY (2004) Toxicity evaluation for an Enterococcus faecium strain TM39 in vitro and in vivo. Food Chem Toxicol 42:1601–1609

    Article  CAS  Google Scholar 

  27. Sahoo TK, Jena PK, Prajapati B, Gehlot L, Patel AK, Seshadri S (2017) In Vivo assessment of immunogenicity and toxicity of the bacteriocin TSU4 in BALB/c mice. Probiotics Antimicrob Proteins 9:345–354. https://doi.org/10.1007/s12602-016-9249-3

    Article  CAS  PubMed  Google Scholar 

  28. Rice EC, Anthony TD (1991) Techniques in radical research. Elsevier, Amsterdam, pp 146–202

    Google Scholar 

  29. Prophet ED, Mills B, Arrington BJ, Sobin LH (1992) Armed force institute of pathology—laboratory methods in histotechnology. American Registry of Pathology, Washington, DC

    Google Scholar 

  30. Todorov SD, van Reenen CA, Dicks LMT (2004) Optimization of bacteriocin production by Lactobacillus plantarum ST13BR, a strain isolated from barley beer. J Gen Appl Microbiol 50:149–157

    Article  CAS  Google Scholar 

  31. Sihombing DE, Arief II, Budiarti S (2015) Application of antimicrobial agents produced by Lactobacillus plantarum IIA-IA5 as natural preservative on beef during room temperature storage. Adv J Food Sci Technol 8:251–255

    Article  CAS  Google Scholar 

  32. Rumjuankiat K, Perez RH, Pilasombut K, Keawsompong S, ZendoT Sonomoto K et al (2015) Purification and characterization of a novel plantaricin, KL-1Y, from Lactobacillus plantarum KL-1. World J Microbiol Biotechnol 31:983–994

    Article  CAS  Google Scholar 

  33. Astawan M, Wresdiyati T, Arief II, Suhesti E (2011) Gambaran hematologi tikus putih (Rattus norvegicus) yang diinfeksi Escherichia coli Enteropatogenik dan diberikan probiotik. Media Peternak 34:7–13

    Article  Google Scholar 

  34. Adlerberth I, Cerque M, Poilane I, Wold A, Collignon A (2000) Mechanisms of colonization and colonization resistance of the digestive tract. Part 1: bacteria/host interactions. Microb Ecol Health Dis 2:223–239

    Article  Google Scholar 

  35. Nougayrède JP, Fernandes PJ, Donnenberg MS (2003) Adhesion of enteropathogenic Escherichia coli to host cells. Cell Microbiol 5(6):359–372

    Article  Google Scholar 

  36. Wilson SE, de Oliveira DC, Hastreiter A, da Silva GB, Beltran JSO, Tsujita M, Crisma AR, Neves SMP, Fock RA, Broeli P (2016) Hematological and biochemical reference value for C57BL/6 Swiss Webster and balb/c mice. Braz J Vet Res Anim Sci 53:138–145

    Article  Google Scholar 

  37. Aboderin F, Oyetayo VO (2006) Haematological studies of rats fed different doses of probiotic, lactobacillus plantarum, isolated from fermenting corn slurry. PJN 5:102–105

    Article  Google Scholar 

  38. Zhang Xu, YangWang Lei Liu, Wei Yunlu, Shang Nan, Zhang Xiangmei, Li Pinglan (2015) Two-peptide bacteriocin PlnEF causes cell membrane damage to Lactobacillus plantarum. Biochim et Biophys Acta 1858(2016):274–280

    Google Scholar 

  39. Santos EW, de Oliveira DC, Hastreiter A, da Silva GB, de OliveiraBeltran JB, Tsujita M, Crisma AR, Neves SMP, Fock RA, Broeli P (2016) Hematological and biochemical reference value for C57BL/6 Swiss Webster and balb/c mice. Braz J Vet Res Anim Sci 53(2):138–145

    Article  Google Scholar 

  40. Jozala AF, Andrade MS, Arauz LJ, Pessoa JRA, Vessoni-Penna TC (2007) Nisin production utilizing skimmed milk aiming to reduce process cost. Appl Biochem Biotechnol 136:515–528

    Google Scholar 

  41. OECD (1987) OECD Test No. 401. Acute oral toxicity [adopted 24 February 1987]. OECD Guidelines for the Testing of Chemicals, Section 4: Health Effects, OECD Publishing, Paris. Available:http://www.oecd-ilibrary.org/environment/test-no-401-acute-oral toxicity_9789264040113-en;jsessionid = 22urukp7xuclf.x-oecd-live-03

  42. Doloksaribu B (2008) Pengaruh Proteksi Vitamin C terhadap Kadar Ureum, Kreatinin dan Gambaran Histopatologis Ginjal Mencit yang Dipapar Plumbum. Thesis, Universitas Sumatera Utara

  43. Bevelander G, Ramaley JA, Gunarso W (1988) Dasar-dasar histology. Edisi kedelapan. Penerbit Erlangga, Jakarta

    Google Scholar 

  44. Dellmann HD, Brown ES (1992) Histologi veteriner II. UI Press, Jakarta

    Google Scholar 

  45. Wisse E, Braet F, Luo D et al (1996) Structure and function of sinusoidal lining cell in the liver. Toxicol Pathol 24:100–111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Insentif Riset Sistem Inovasi Nasional (INSINAS) programme from Ministry of Research, Technology, and Higher Education from 2016−2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apon Zaenal Mustopa.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

This article contain any studies with animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanny, E.L.L., Mustopa, A.Z., Budiarti, S. et al. Efficacy, toxicity study and antioxidant properties of plantaricin E and F recombinants against enteropathogenic Escherichia coli K1.1 (EPEC K1.1). Mol Biol Rep 46, 6501–6512 (2019). https://doi.org/10.1007/s11033-019-05096-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05096-9

Keywords

Navigation