Abstract
Olanzapine (OLA), is prescribed as an anti-psychotic medicine in schizophrenia patients. In this study, the protective effect of OLA against genotoxicity and apoptosis induced by ionizing radiation in human healthy lymphocytes was evaluated. At first, the antioxidant activities of OLA were assayed by two different methods as free radical scavenging with DPPH (2,2-diphenyl-1-picryl-hydrazyl) and ferric reducing power methods. In in vitro experiment, human blood samples were treated with OLA at various concentrations (0.25–20 μM) for 3 h and then were exposed to X-ray at a dose of 150 cGy. The genotoxicity was assessed in binucleated human lymphocytes with micronuclei assay. The apoptotic lymphocytes were assessed by flow cytometry in OLA treated and/or irradiated lymphocytes. OLA exhibited free radical scavenging and reducing power activities more than ascorbic acid. The results showed that the lymphocytes treated with OLA and later exposed to IR presented lower frequencies of micronuclei and apoptosis compared to the control sample which was irradiated and not treated to OLA. The maximum radioprotection was observed at 20 μM of OLA with 83% of efficacy. The present study suggested the protective role for OLA in protection radiation-induced genetic damage and apoptosis induced by ionizing irradiation in human normal cells.
Similar content being viewed by others
References
Hosseinimehr SJ (2010) Flavonoids and genomic instability induced by ionizing radiation. Drug Discov Today 15(21):907–918
Hosseinimehr SJ (2007) Trends in the development of radioprotective agents. Drug Discov Today 12(19–20):794–805. https://doi.org/10.1016/j.drudis.2007.07.017
Hosseinimehr SJ, Ahmadi A, Beiki D, Habibi E, Mahmoudzadeh A (2009) Protective effects of hesperidin against genotoxicity induced by (99 m)Tc-MIBI in human cultured lymphocyte cells. Nucl Med Biol 36(7):863–867. https://doi.org/10.1016/j.nucmedbio.2009.06.002
Hosseinimehr SJ, Mahmoudzadeh A, Ahmadi A, Mohamadifar S, Akhlaghpoor S (2009) Radioprotective effects of hesperidin against genotoxicity induced by gamma-irradiation in human lymphocytes. Mutagenesis 24(3):233–235. https://doi.org/10.1093/mutage/gep001
Hosseinimehr SJ, Nobakht R, Ghasemi A, Pourfallah TA (2015) Radioprotective effect of mefenamic acid against radiation-induced genotoxicity in human lymphocytes. Radiat Oncol J 33(3):256–260. https://doi.org/10.3857/roj.2015.33.3.256
Alizadeh F, Asghari M, Torabizadeh SA, Rahmanian N, Ghasemi A, Hosseinimehr SJ (2018) Radioprotective effect of sinapic acid against genotoxicity and apoptosis induced by ionizing radiation on human lymphocytes. Lett Drug Des Discov 15(11):1147–1154. https://doi.org/10.2174/1570180815666180219163626
Zal Z, Ghasemi A, Azizi S, Asgarian-Omran H, Montazeri A, Hosseinimehr SJ (2018) Radioprotective effect of cerium oxide nanoparticles against genotoxicity induced by ionizing radiation on human lymphocytes. Curr Radiopharm 11(2):109–115. https://doi.org/10.2174/1874471011666180528095203
Werner FM, Covenas R (2014) Safety of antipsychotic drugs: focus on therapeutic and adverse effects. Expert Opin Drug Saf 13(8):1031–1042. https://doi.org/10.1517/14740338.2014.935761
Navari RM, Nagy CK, Le-Rademacher J, Loprinzi CL (2016) Olanzapine versus fosaprepitant for the prevention of concurrent chemotherapy radiotherapy-induced nausea and vomiting. J Community Support Oncol 14(4):141–147. https://doi.org/10.12788/jcso.0245
Sutherland A, Naessens K, Plugge E, Ware L, Head K, Burton MJ, Wee B (2018) Olanzapine for the prevention and treatment of cancer-related nausea and vomiting in adults. Cochrane Database Syst Rev 9:CD012555. https://doi.org/10.1002/14651858.CD012555.pub2
Csernansky JG, Martin MV, Czeisler B, Meltzer MA, Ali Z, Dong H (2006) Neuroprotective effects of olanzapine in a rat model of neurodevelopmental injury. Pharmacol Biochem Behav 83(2):208–213. https://doi.org/10.1016/j.pbb.2006.01.009
Stanisavljevic A, Peric I, Pantelic M, Filipovic DM (2017) Olanzapine alleviates oxidative stress in the liver of socially isolated rats. Can J Physiol Pharmacol 95(6):634–640. https://doi.org/10.1139/cjpp-2016-0598
Wang H, Xu H, Dyck LE, Li XM (2005) Olanzapine and quetiapine protect PC12 cells from beta-amyloid peptide(25-35)-induced oxidative stress and the ensuing apoptosis. J Neurosci Res 81(4):572–580. https://doi.org/10.1002/jnr.20570
Brinholi FF, Farias CC, Bonifacio KL, Higachi L, Casagrande R, Moreira EG, Barbosa DS (2016) Clozapine and olanzapine are better antioxidants than haloperidol, quetiapine, risperidone and ziprasidone in in vitro models. Biomed Pharmacother 81:411–415. https://doi.org/10.1016/j.biopha.2016.02.047
Sadowska-Bartosz I, Galiniak S, Bartosz G, Zuberek M, Grzelak A, Dietrich-Muszalska A (2016) Antioxidant properties of atypical antipsychotic drugs used in the treatment of schizophrenia. Schizophr Res 176(2–3):245–251. https://doi.org/10.1016/j.schres.2016.07.010
Al-Chalabi BM, Thanoon IA, Ahmed FA (2009) Potential effect of olanzapine on total antioxidant status and lipid peroxidation in schizophrenic patients. Neuropsychobiology 59(1):8–11. https://doi.org/10.1159/000202823
Hosseinimehr SJ, Azadbakht M, Mousavi SM, Mahmoudzadeh A, Akhlaghpoor S (2007) Radioprotective effects of hawthorn fruit extract against gamma irradiation in mouse bone marrow cells. J Radiat Res (Tokyo) 48(1):63–68. https://doi.org/10.1269/jrr.06032
Hosseinimehr SJ, Izakmehri M, Ghasemi A (2015) In vitro protective effect of atorvastatin against ionizing radiation induced genotoxicity in human lymphocytes. Cell Mol Biol (Noisy-le-grand) 61(1):68–71
Hosseinimehr SJ, Fathi M, Ghasemi A, Shiadeh SN, Pourfallah TA (2017) Celecoxib mitigates genotoxicity induced by ionizing radiation in human blood lymphocytes. Res Pharm Sci 12(1):82–87. https://doi.org/10.4103/1735-5362.199051
Cheki M, Shirazi A, Mahmoudzadeh A, Bazzaz JT, Hosseinimehr SJ (2016) The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Mutat Res 809:24–32. https://doi.org/10.1016/j.mrgentox.2016.09.001
Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455(1–2):81–95. https://doi.org/10.1016/s0027-5107(00)00065-8
Macwan CP, Patel MA (2010) Antioxidant potential of dried root of Capparis zylanica linn. Int J Pharm Pharm Sci 30:58–60
Pinkawa M, Brzozowska K, Kriehuber R, Eble MJ, Schmitz S (2016) Prediction of radiation-induced toxicity by in vitro radiosensitivity of lymphocytes in prostate cancer patients. Future Oncol 12(5):617–624. https://doi.org/10.2217/fon.15.334
Sharma D, Sandur SK, Rashmi R, Maurya DK, Suryavanshi S, Checker R, Krishnan S, Sainis KB (2010) Differential activation of NF-kappaB and nitric oxide in lymphocytes regulates in vitro and in vivo radiosensitivity. Mutat Res 703(2):149–157. https://doi.org/10.1016/j.mrgentox.2010.08.010
Weiss JF, Landauer MR (2000) Radioprotection by antioxidants. Ann N Y Acad Sci 899:44–60
Castillo J, Benavente-Garcia O, Lorente J, Alcaraz M, Redondo A, Ortuno A, Del Rio JA (2000) Antioxidant activity and radioprotective effects against chromosomal damage induced in vivo by X-rays of flavan-3-ols (Procyanidins) from grape seeds (Vitis vinifera): comparative study versus other phenolic and organic compounds. J Agric Food Chem 48(5):1738–1745. https://doi.org/10.1021/jf990665o
Farias CCd, Bonifácio KL, Matsumoto AK, Higachi L, Casagrande R, Moreira EG, Barbosa DS (2014) Comparison of the antioxidant potential of antiparkinsonian drugs in different in vitro models. Braz J Pharm Sci 50:819–826
Zhao QL, Ito H, Kondo T, Uehara T, Ikeda M, Abe H, Saitoh JI, Noguchi K, Suzuki M, Kurachi M (2019) Antipsychotic drugs scavenge radiation-induced hydroxyl radicals and intracellular ROS formation, and protect apoptosis in human lymphoma U937 cells. Free Radic Res. https://doi.org/10.1080/10715762.2019.1572889
Lord CC, Wyler SC, Wan R, Castorena CM, Ahmed N, Mathew D, Lee S, Liu C, Elmquist JK (2017) The atypical antipsychotic olanzapine causes weight gain by targeting serotonin receptor 2C. J Clin Invest 127(9):3402–3406. https://doi.org/10.1172/JCI93362
Rummel-Kluge C, Komossa K, Schwarz S, Hunger H, Schmid F, Lobos CA, Kissling W, Davis JM, Leucht S (2010) Head-to-head comparisons of metabolic side effects of second generation antipsychotics in the treatment of schizophrenia: a systematic review and meta-analysis. Schizophr Res 123(2–3):225–233. https://doi.org/10.1016/j.schres.2010.07.012
Townsend LK, Peppler WT, Bush ND, Wright DC (2018) Obesity exacerbates the acute metabolic side effects of olanzapine. Psychoneuroendocrinology 88:121–128. https://doi.org/10.1016/j.psyneuen.2017.12.004
Zhang Y, Liu Y, Su Y, You Y, Ma Y, Yang G, Song Y, Liu X, Wang M, Zhang L, Kou C (2017) The metabolic side effects of 12 antipsychotic drugs used for the treatment of schizophrenia on glucose: a network meta-analysis. BMC Psychiatry 17(1):373. https://doi.org/10.1186/s12888-017-1539-0
Yood MU, DeLorenze G, Quesenberry CP Jr, Oliveria SA, Tsai AL, Willey VJ, McQuade R, Newcomer J, L’Italien G (2009) The incidence of diabetes in atypical antipsychotic users differs according to agent–results from a multisite epidemiologic study. Pharmacoepidemiol Drug Saf 18(9):791–799. https://doi.org/10.1002/pds.1781
Hirsch L, Yang J, Bresee L, Jette N, Patten S, Pringsheim T (2017) Second-generation antipsychotics and metabolic side effects: a systematic review of population-based studies. Drug Saf 40(9):771–781. https://doi.org/10.1007/s40264-017-0543-0
Weintraub D, Chiang C, Kim HM, Wilkinson J, Marras C, Stanislawski B, Mamikonyan E, Kales HC (2016) Association of antipsychotic use with mortality risk in patients with Parkinson disease. JAMA Neurol 73(5):535–541. https://doi.org/10.1001/jamaneurol.2016.0031
Yuan M, Sperry L, Malhado-Chang N, Duffy A, Wheelock V, Farias S, O’Connor K, Olichney J, Shahlaie K, Zhang L (2017) Atypical antipsychotic therapy in Parkinson’s disease psychosis: a retrospective study. Brain Behav 7(6):e00639. https://doi.org/10.1002/brb3.639
Marras C, Herrmann N, Anderson GM, Fischer HD, Wang X, Rochon PA (2012) Atypical antipsychotic use and parkinsonism in dementia: effects of drug, dose, and sex. Am J Geriatr Pharmacother 10(6):381–389. https://doi.org/10.1016/j.amjopharm.2012.11.001
Chiu L, Chow R, Popovic M, Navari RM, Shumway NM, Chiu N, Lam H, Milakovic M, Pasetka M, Vuong S, Chow E, DeAngelis C (2016) Efficacy of olanzapine for the prophylaxis and rescue of chemotherapy-induced nausea and vomiting (CINV): a systematic review and meta-analysis. Support Care Cancer 24(5):2381–2392. https://doi.org/10.1007/s00520-016-3075-8
Yang T, Liu Q, Lu M, Ma L, Zhou Y, Cui Y (2017) Efficacy of olanzapine for the prophylaxis of chemotherapy-induced nausea and vomiting: a meta-analysis. Br J Clin Pharmacol 83(7):1369–1379. https://doi.org/10.1111/bcp.13242
Mauri MC, Steinhilber CP, Marino R, Invernizzi E, Fiorentini A, Cerveri G, Baldi ML, Barale F (2005) Clinical outcome and olanzapine plasma levels in acute schizophrenia. Eur Psychiatry 20(1):55–60. https://doi.org/10.1016/j.eurpsy.2004.09.009
Kelly DL, Richardson CM, Yu Y, Conley RR (2006) Plasma concentrations of high-dose olanzapine in a double-blind crossover study. Hum Psychopharmacol 21(6):393–398. https://doi.org/10.1002/hup.781
Bergemann N, Frick A, Parzer P, Kopitz J (2004) Olanzapine plasma concentration, average daily dose, and interaction with co-medication in schizophrenic patients. Pharmacopsychiatry 37(2):63–68. https://doi.org/10.1055/s-2004-815527
Eriksson D, Stigbrand T (2010) Radiation-induced cell death mechanisms. Tumour Biol 31(4):363–372. https://doi.org/10.1007/s13277-010-0042-8
Funding
Funding was provided by Elite Researcher Grant Committee from the National Institute for Medical Research Development, Grant No. 963296, Tehran, Iran.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This study was approved by research and ethical committees of the Iranian National Institute for Medical Research and Development (ID#IR.NIMAD.REC.1396. 235).
Informed consent
Written informed consents were also obtained from healthy male volunteers. This study was performed only in vitro experiments on blood samples of healthy male volunteers.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Asghari, M., Shaghaghi, Z., Farzipour, S. et al. Radioprotective effect of olanzapine as an anti-psychotic drug against genotoxicity and apoptosis induced by ionizing radiation on human lymphocytes. Mol Biol Rep 46, 5909–5917 (2019). https://doi.org/10.1007/s11033-019-05024-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-019-05024-x