Skip to main content
Log in

Anti-leukemic effects of simvastatin on NRASG12D mutant acute myeloid leukemia cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The statins are a group of therapeutic drugs widely used for lowering plasma cholesterol level, while it has also been reported to induce cell death in human acute myeloid leukemia (AML) cells. To determine antitumor activity triggered by simvastatin, four AML cell lines—U937, KG1, THP1 (NRASG12D mutant) and HL60 (NRASQ61L mutant)—were cultured with simvastatin and cell viability was assessed using the CellTiter-Glo reagent. For understanding mechanism of antitumor activity, immunoblot analysis for pAkt (Ser473), Akt, pMEK, MEK, pERK (Thr202/Tyr204) and ERK (Thr202/Tyr204) was performed. Apoptotic cell population was calculated using the Annexin V-FITC assay, and cell cycle state was assessed by flow cytometry. Simvastatin showed different cytotoxic effect among AML cells, of which NRASG12D mutant THP1 was the most statin sensitive cell line (IC50 values: 1.96 uM in HL60, 7.87 uM in KG1, 0.83 uM in THP1 and 1.37 uM in U937). Western blot analysis revealed that Ras downstream signaling molecules including Akt, MEK, and ERK1/2 were markedly inhibited in THP1 cells compared to other AML cells when exposed to simvastatin. In addition, only in THP1 cells, increased apoptosis and cell cycle arrest by simvastatin was observed. The combination of simvastatin and MEK inhibitor AZD6244 synergistically reduced THP1 cell proliferation compared to simvastatin alone and AZD6244 alone (IC50 values: 0.88 uM in simvastatin, 0.32 uM in AZD6244, and 0.23 uM in combination of simvastatin and AZD6244). Simvastatin exhibited anti-leukemic effect in human AML cells in vitro, especially at NRASG12D mutant AML cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alizadeh J, Zeki AA, Mirzaei N, Tewary S, Rezaei Moghadam A, Glogowska A, Nagakannan P, Eftekharpour E, Wiechec E, Gordon JW, Xu FY, Field JT, Yoneda KY, Kenyon NJ, Hashemi M, Hatch GM, Hombach-Klonisch S, Klonisch T, Ghavami S (2017) Mevalonate cascade inhibition by simvastatin induces the intrinsic apoptosis pathway via depletion of isoprenoids in tumor cells. Sci Rep 7:44841

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405

    Article  CAS  Google Scholar 

  3. Assouline S, Cocolakis E, Borden KL (2012) The development of novel therapies for the treatment of acute myeloid leukemia (AML). Cancers (Basel) 4(4):1161–1179

    CAS  Google Scholar 

  4. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S (2006) Implications of NRAS mutations in AML: a study of 2502 patients. Blood 107(10):3847–3853

    CAS  PubMed  Google Scholar 

  5. Bathaie SZ, Ashrafi M, Azizian M, Tamanoi F (2017) Mevalonate pathway and human cancers. Curr Mol Pharmacol 10(2):77–85

    PubMed  Google Scholar 

  6. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C (1985) Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Ann Intern Med 103(4):620–625

    CAS  PubMed  Google Scholar 

  7. Berman JN, Gerbing RB, Alonzo TA, Ho PA, Miller K, Hurwitz C, Heerema NA, Hirsch B, Raimondi SC, Lange B, Franklin JL, Gamis A, Meshinchi S (2011) Prevalence and clinical implications of NRAS mutations in childhood AML: a report from the Children’s Oncology Group. Leukemia 25(6):1039–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Borthakur G, Popplewell L, Boyiadzis M, Foran JM, Platzbecker U, Vey N, Roland WB, Olin RL, Raza A, Giagounidis A, Ottmann OG, Al-Kali A, Jabbour EJ, Kadia TM, Garcia-Manero G, Bauman JW, Wu Y, Liu Y, Schramek D, Zhu JZ, Wissel P, Kantarjian HM (2012) Phase I/II trial of the MEK1/2 inhibitor trametinib (GSK1120212) in relapsed/refractory myeloid malignancies: evidence of activity in patients with RAS mutation-positive disease. Blood 120(Suppl):677a

    Google Scholar 

  9. Buchner T, Berdel WE, Haferlach C, Haferlach T, Schnittger S, Muller-Tidow C, Braess J, Spiekermann K, Kienast J, Staib P, Gruneisen A, Kern W, Reichle A, Maschmeyer G, Aul C, Lengfelder E, Sauerland MC, Heinecke A, Wormann B, Hiddemann W (2009) Age-related risk profile and chemotherapy dose response in acute myeloid leukemia: a study by the German Acute Myeloid Leukemia Cooperative Group. J Clin Oncol 27(1):61–69

    PubMed  Google Scholar 

  10. Burke LP, Kukoly CA (2008) Statins induce lethal effects in acute myeloblastic leukemia [corrected] cells within 72 hours. Leuk Lymphoma 49(2):322–330

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Burnett AK, Hills RK, Milligan DW, Goldstone AH, Prentice AG, McMullin MF, Duncombe A, Gibson B, Wheatley K (2010) Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J Clin Oncol 28(4):586–595

    CAS  PubMed  Google Scholar 

  12. Campbell MJ, Esserman LJ, Zhou Y, Shoemaker M, Lobo M, Borman E, Baehner F, Kumar AS, Adduci K, Marx C, Petricoin EF, Liotta LA, Winters M, Benz S, Benz CC (2006) Breast cancer growth prevention by statins. Cancer Res 66(17):8707–8714

    CAS  PubMed  Google Scholar 

  13. Dahia PL, Aguiar RC, Alberta J, Kum JB, Caron S, Sill H, Marsh DJ, Ritz J, Freedman A, Stiles C, Eng C (1999) PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanismsin haematological malignancies. Hum Mol Genet 8(2):185–193

    CAS  PubMed  Google Scholar 

  14. Dai Y, Khanna P, Chen S, Pei XY, Dent P, Grant S (2007) Statins synergistically potentiate 7-hydroxystaurosporine (UCN-01) lethality in human leukemia and myeloma cells by disrupting Ras farnesylation and activation. Blood 109(10):4415–4423

    CAS  PubMed  PubMed Central  Google Scholar 

  15. de Jonge-Peeters SD, van der Weide K, Kuipers F, Sluiter WJ, de Vries EG, Vellenga E (2009) Variability in responsiveness to lovastatin of the primitive CD34+ AML subfraction compared to normal CD34+ cells. Ann Hematol 88(6):573–580

    PubMed  Google Scholar 

  16. Dimitroulakos J, Nohynek D, Backway KL, Hedley DW, Yeger H, Freedman MH, Minden MD, Penn LZ (1999) Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: a potential therapeutic approach. Blood 93(4):1308–1318

    CAS  PubMed  Google Scholar 

  17. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Lowenberg B, Bloomfield CD, European L (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3):453–474

    PubMed  Google Scholar 

  18. Engen CB, Wergeland L, Skavland J, Gjertsen BT (2014) Targeted therapy of FLT3 in treatment of AML-current status and future directions. J Clin Med 3(4):1466–1489

    PubMed  PubMed Central  Google Scholar 

  19. Fromigue O, Hay E, Modrowski D, Bouvet S, Jacquel A, Auberger P, Marie PJ (2006) RhoA GTPase inactivation by statins induces osteosarcoma cell apoptosis by inhibiting p42/p44-MAPKs-Bcl-2 signaling independently of BMP-2 and cell differentiation. Cell Death Differ 13(11):1845–1856

    CAS  PubMed  Google Scholar 

  20. Fujiwara D, Tsubaki M, Takeda T, Tomonari Y, Koumoto YI, Sakaguchi K, Nishida S (2017) Statins induce apoptosis through inhibition of Ras signaling pathways and enhancement of Bim and p27 expression in human hematopoietic tumor cells. Tumour Biol 39(10):1010428317734947

    PubMed  Google Scholar 

  21. Gao W, Estey E (2015) Moving toward targeted therapies in acute myeloid leukemia. Clin Adv Hematol Oncol 13(11):748–754

    PubMed  Google Scholar 

  22. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, Lister TA (1997) Bloomfield CD (1999) World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia. J Clin Oncol 17(12):3835–3849

    Google Scholar 

  23. Jain N, Curran E, Iyengar NM, Diaz-Flores E, Kunnavakkam R, Popplewell L, Kirschbaum MH, Karrison T, Erba HP, Green M, Poire X, Koval G, Shannon K, Reddy PL, Joseph L, Atallah EL, Dy P, Thomas SP, Smith SE, Doyle LA, Stadler WM, Larson RA, Stock W, Odenike O (2014) Phase II study of the oral MEK inhibitor selumetinib in advanced acute myelogenous leukemia: a University of Chicago phase II consortium trial. Clin Cancer Res 20(2):490–498

    CAS  PubMed  Google Scholar 

  24. Jiang Z, Zheng X, Lytle RA, Higashikubo R, Rich KM (2004) Lovastatin-induced up-regulation of the BH3-only protein, Bim, and cell death in glioblastoma cells. J Neurochem 89(1):168–178

    CAS  PubMed  Google Scholar 

  25. Johnson DB, Smalley KS, Sosman JA (2014) Molecular pathways: targeting NRAS in melanoma and acute myelogenous leukemia. Clin Cancer Res 20(16):4186–4192

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim SC, Hahn JS, Min YH, Yoo NC, Ko YW, Lee WJ (1999) Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood 93(11):3893–3899

    CAS  PubMed  Google Scholar 

  27. Knapper S, Burnett AK, Littlewood T, Kell WJ, Agrawal S, Chopra R, Clark R, Levis MJ, Small D (2006) A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 108(10):3262–3270

    CAS  PubMed  Google Scholar 

  28. Kumar CC (2011) Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer 2(2):95–107

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee J, Lee SH, Hur KY, Woo SY, Kim SW, Kang WK (2012) Statins and the risk of gastric cancer in diabetes patients. BMC Cancer 12:596

    PubMed  PubMed Central  Google Scholar 

  30. Lee SJ, Lee I, Lee J, Park C, Kang WK (2014) Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, potentiate the anti-angiogenic effects of bevacizumab by suppressing angiopoietin2, BiP, and Hsp90alpha in human colorectal cancer. Br J Cancer 111(3):497–505

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Levis M, Ravandi F, Wang ES, Baer MR, Perl A, Coutre S, Erba H, Stuart RK, Baccarani M, Cripe LD, Tallman MS, Meloni G, Godley LA, Langston AA, Amadori S, Lewis ID, Nagler A, Stone R, Yee K, Advani A, Douer D, Wiktor-Jedrzejczak W, Juliusson G, Litzow MR, Petersdorf S, Sanz M, Kantarjian HM, Sato T, Tremmel L, Bensen-Kennedy DM, Small D, Smith BD (2011) Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 117(12):3294–3301

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D, Konopleva M, Zhao S, Estey E, Andreeff M (2001) Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 108(6):851–859

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Newman A, Clutterbuck RD, Powles RL, Millar JL (1994) Selective inhibition of primary acute myeloid leukaemia cell growth by simvastatin. Leukemia 8(11):2023–2029

    CAS  PubMed  Google Scholar 

  34. Ofran Y, Tallman MS, Rowe JM (2016) How I treat acute myeloid leukemia presenting with preexisting comorbidities. Blood 128(4):488–496

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Perentesis JP, Bhatia S, Boyle E, Shao Y, Shu XO, Steinbuch M, Sather HN, Gaynon P, Kiffmeyer W, Envall-Fox J, Robison LL (2004) RAS oncogene mutations and outcome of therapy for childhood acute lymphoblastic leukemia. Leukemia 18(4):685–692

    CAS  PubMed  Google Scholar 

  36. Ricciardi MR, McQueen T, Chism D, Milella M, Estey E, Kaldjian E, Sebolt-Leopold J, Konopleva M, Andreeff M (2005) Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 19(9):1543–1549

    CAS  PubMed  Google Scholar 

  37. Roboz GJ (2011) Novel approaches to the treatment of acute myeloid leukemia. Hematol Am Soc Hematol Educ Progr 2011:43–50

    Google Scholar 

  38. Saultz JN, Garzon R (2016) Acute myeloid leukemia: a concise review. J Clin Med 5(3):33

    PubMed Central  Google Scholar 

  39. Serve H, Krug U, Wagner R, Sauerland MC, Heinecke A, Brunnberg U, Schaich M, Ottmann O, Duyster J, Wandt H, Fischer T, Giagounidis A, Neubauer A, Reichle A, Aulitzky W, Noppeney R, Blau I, Kunzmann V, Stuhlmann R, Kramer A, Kreuzer KA, Brandts C, Steffen B, Thiede C, Muller-Tidow C, Ehninger G, Berdel WE (2013) Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J Clin Oncol 31(25):3110–3118

    CAS  PubMed  Google Scholar 

  40. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K, Murphy KM, Dauses T, Allebach J, Small D (2004) Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103(10):3669–3676

    CAS  PubMed  Google Scholar 

  41. Towatari M, Iida H, Tanimoto M, Iwata H, Hamaguchi M, Saito H (1997) Constitutive activation of mitogen-activated protein kinase pathway in acute leukemia cells. Leukemia 11(4):479–484

    CAS  PubMed  Google Scholar 

  42. van der Weide K, de Jonge-Peeters SD, Kuipers F, de Vries EG, Vellenga E (2009) Combining simvastatin with the farnesyltransferase inhibitor tipifarnib results in an enhanced cytotoxic effect in a subset of primary CD34+ acute myeloid leukemia samples. Clin Cancer Res 15(9):3076–3083

    PubMed  Google Scholar 

  43. van der Weide K, Korthuis PM, Kuipers F, de Vries EG, Vellenga E (2012) Heterogeneity in simvastatin-induced cytotoxicity in AML is caused by differences in Ras-isoprenylation. Leukemia 26(4):845–848

    PubMed  Google Scholar 

  44. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951

    CAS  PubMed  Google Scholar 

  45. Wang ZY, Chen Z (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111(5):2505–2515

    CAS  PubMed  Google Scholar 

  46. Won JK, Yang HW, Shin SY, Lee JH, Heo WD, Cho KH (2012) The crossregulation between ERK and PI3 K signaling pathways determines the tumoricidal efficacy of MEK inhibitor. J Mol Cell Biol 4(3):153–163

    PubMed  Google Scholar 

  47. Zhang W, Konopleva M, Shi YX, McQueen T, Harris D, Ling X, Estrov Z, Quintas-Cardama A, Small D, Cortes J, Andreeff M (2008) Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 100(3):184–198

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J., Lee, J., Jang, J.H. et al. Anti-leukemic effects of simvastatin on NRASG12D mutant acute myeloid leukemia cells. Mol Biol Rep 46, 5859–5866 (2019). https://doi.org/10.1007/s11033-019-05019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05019-8

Keywords

Navigation