Skip to main content

Advertisement

Log in

Matrix metalloproteinase-3 predicts clinical cardiovascular outcomes in patients with coronary artery disease: a 5 years cohort study

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are implicated in atherosclerosis evolution into a coronary artery disease (CAD). They could be used as biomarkers for a predictive approach when they are studied simultaneously. We aim in our study to demonstrate prospectively in patients with history of CAD that MMPs level is linked to clinical cardiovascular outcomes. Two hundred and eighteen patients diagnosed with CAD were followed prospectively for 5 years in the Cardiology Department of la Rabta Hospital University. Clinical cardiovascular outcomes during the period of the cohort were recorded. Measures were performed for biological and matrix markers at baseline. MMP-3, MMP-8, MMP-9, TIMP-1 and TIMP-2 were measured by ELISA in Sandwich assay. Fifty-nine cardiovascular outcomes occurred during the cohort period. By multivariate analysis, only MMP-3 persisted as a predictor for cardiovascular events even after adjustment. This metalloproteinase have been shown to be an independent predictor for cardiovascular outcomes (HR = 3.01; CI (1.3–6.95). The found cut-off value by receiver operating curve (ROC) was used for Kaplan–Meier analysis and revealed that patients with MMP-3 level higher than 9.3 ng/mL had a lower survival rate (p = 0.03). MMP-3 baseline level in patients with history of CAD is a potential predictor for cardiovascular outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodeling. Nat Rev Mol Cell Biol 8:221–233. https://doi.org/10.1038/nrm2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 4(6):2493–2503. https://doi.org/10.1172/JCI117619

    Article  Google Scholar 

  3. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516. https://doi.org/10.1146/annurev.cellbio.17.1.463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. González-Pacheco H, Vargas-Barrón J, Vallejo M, Piña-Reyna Y, Altamirano-Castillo A, Sánchez-Tapia P et al (2014) Prevalence of conventional risk factors and lipid profiles in patients with acute coronary syndrome and significant coronary disease. Ther Clin Risk Manage 10:815

    Article  Google Scholar 

  5. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G et al (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383(9932):1933–1943. https://doi.org/10.1016/S0140-6736(14)60107-110

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brauer PR (2006) MMPs–role in cardiovascular development and disease. Front Biosci 11:447–478

    Article  CAS  PubMed  Google Scholar 

  7. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94(6):2493–2503. https://doi.org/10.1172/JCI117619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T et al (2000) A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102(16):1944–1949

    Article  CAS  PubMed  Google Scholar 

  9. Boluyt MO, O’Neill L, Meredith AL, Bing OH, Brooks WW, Conrad CH et al (1994) Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circ Res 75(1):23–32

    Article  CAS  PubMed  Google Scholar 

  10. Rysä J, Leskinen H, Ilves M, Ruskoaho H (2005) Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure. Hypertension 45(5):927–933

    Article  PubMed  Google Scholar 

  11. Mittal B, Mishra A, Srivastava A, Kumar S, Garg N (2014) Matrix metalloproteinases in coronary artery disease. Adv Clin Chem 64:1–72

    Article  CAS  PubMed  Google Scholar 

  12. Jefferis BJ, Whincup P, Welsh P, Wannamethee G, Rumley A, Lennon L et al (2010) Prospective study of matrix metalloproteinase-9 and risk of myocardial infarction and stroke in older men and women. Atherosclerosis 208(2):557–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fertin M, Lemesle G, Turkieh A, Beseme O, Chwastyniak M, Amouyel P et al (2013) Serum MMP-8: a novel indicator of left ventricular remodeling and cardiac outcome in patients after acute myocardial infarction. PLoS ONE 8(8):e71280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Galis ZS, Sukhova GK, Kranzhofer R, Clark S, Libby P (1995) Macrophage foam cells from experimental atheroma constitutively produce matrix degrading proteinases. Proc Natl Acad Sci USA 92(2):402–406

    Article  CAS  PubMed  Google Scholar 

  15. Sundström J, Evans JC, Benjamin EJ, Levy D, Larson MG, Sawyer DB et al (2004) Relations of plasma total TIMP-1 levels to cardiovascular risk factors and echocardiographic measures: the Framingham heart study. Eur Heart J 25(17):1509–1516

    Article  PubMed  Google Scholar 

  16. Herman MP, Sukhova GK, Libby P, Gerdes N, Tang N, Horton DB et al (2001) Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation 104(16):1899–1904

    Article  CAS  PubMed  Google Scholar 

  17. Jefferis BJ, Whincup P, Welsh P, Wannamethee G, Rumley A, Lennon L, Thomson A et al (2010) Prospective study of matrix metalloproteinase-9 and risk of myocardial infarction and stroke in older men and women. Atherosclerosis 208(2):557–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sorsa T, Tjäderhane L, Konttinen YT, Lauhio A, Salo T, Lee HM et al (2006) Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann Med 38(5):306–321. https://doi.org/10.1080/07853890600800103

    Article  CAS  PubMed  Google Scholar 

  19. Romanic AM, Burns-Kurtis CL, Gout B, Berrebi-Bertrand I, Ohlstein EH (2001) Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci 68(7):799–814

    Article  CAS  PubMed  Google Scholar 

  20. Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98(17):1728–1734

    Article  CAS  PubMed  Google Scholar 

  21. DE Cutlip, Windecker S, Mehran R, Boam A, Cohen DJ, van Es GA et al (2007) Academic research consortium. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 115(17):2344–2351

    Article  Google Scholar 

  22. K/DOQI Clinical Practice Guidelines for Chronic Kidney Disease (2002) Evaluation, classification, and stratification Part 5 Evaluation of laboratory measurements for clinical assessment of kidney disease. Am J Kidney Dis 39:S76–S110

    Article  Google Scholar 

  23. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease Study Group. Ann Intern Med 130(6):461–470

    Article  CAS  PubMed  Google Scholar 

  24. Levey AS, Greene T, Kusek J, Beck GJ, Group (2000) A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol 11:A0828

    Google Scholar 

  25. Lindsey ML, Goshorn DK, Squires CE, Escobar GP, Hendrick JW, Mingoia JT et al (2005) Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function. Cardiovasc Res 66(2):410–419. https://doi.org/10.1016/j.cardiores.2004.11.029

    Article  CAS  PubMed  Google Scholar 

  26. Libby P, Aikawa M, Jain MK (2006) Vascular endothelium and atherosclerosis. Handb Exp Pharmacol 176(2):285–306

    Article  CAS  Google Scholar 

  27. Henney AM, Wakeley PR, Davies MJ, Foster K, Hembry R, Murphy G et al (1991) Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci USA 88(18):8154–8158

    Article  CAS  PubMed  Google Scholar 

  28. Libby P, Lee RT (2000) Matrix matters. Circulation 120:1874–1876

    Article  Google Scholar 

  29. Luan Z, Chase AJ, Newby AC (2003) Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol 23(5):769–775. https://doi.org/10.1161/01.ATV.0000068646.76823.AE

    Article  CAS  PubMed  Google Scholar 

  30. Massaro M, Zampolli A, Scoditti E, Carluccio MA, Storelli C, Distante A et al (2010) Statins inhibit cyclooxygenase-2 and matrix metalloproteinase-9 in human endothelial cells: anti-angiogenic actions possibly contributing to plaque stability. Cardiovasc Res 86(2):311–320. https://doi.org/10.1093/cvr/cvp375

    Article  CAS  PubMed  Google Scholar 

  31. Izidoro-Toledo TC, Guimaraes DA, Belo VA, Gerlach RF, Tanus-Santos JE (2011) Effects of statins on matrix metalloproteinases and their endogenous inhibitors in human endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 383(6):547–554

    Article  CAS  PubMed  Google Scholar 

  32. Davignon J (2004) Beneficial cardiovascular pleiotropic effects of statins. Circulation 109(23):39–43

    Google Scholar 

  33. Sahebkar A, Serban C, Ursoniu S, Mikhailidis DP, Undas A, Lip GY et al (2016) The impact of statin therapy on plasma levels of von Willebrand factor antigen. Systematic review and meta-analysis of randomised placebocontrolled trials. Thromb Haemost 115(3):520–532

    Article  PubMed  Google Scholar 

  34. Sahebkar A, Simental-Mendia LE, Pedone C, Ferretti G, Nachtigal N, Simona Bo S et al (2016) Statin therapy and plasma free fatty acids: a systematic review and meta-analysis of controlled clinical trials. Br J Clin Pharmacol 81(5):807–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Senzaki H, Paolocci N, Gluzband YA, Lindsey ML, Janicki JS, Crow MT et al (2000) Beta-blockade prevents sustained metalloproteinase activation and diastolic stiffening induced by angiotensin II combined with evolving cardiac dysfunction. Circ Res 86(7):807–815. https://doi.org/10.1161/01.RES.86.7.807

    Article  CAS  PubMed  Google Scholar 

  36. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839. https://doi.org/10.1161/01.RES.0000070112.80711.3D

    Article  CAS  PubMed  Google Scholar 

  37. Ugwu F, Van Hoef B, Bini A, Collen D, Lijnen HR (1998) Proteolytic cleavage of urokinase-type plasminogen activator by stromelysin-1 (MMP-3). Biochemistry 37(20):7231–7236

    Article  CAS  PubMed  Google Scholar 

  38. Johnson JL, Dwivedi A, Somerville M, George SJ, Newby AC (2011) Matrix metalloproteinase (MMP)-3 activates MMP-9 mediated vascular smooth muscle cell migration and neointima formation in mice. Arterioscler Thromb Vasc Biol 31(9):35–44. https://doi.org/10.1161/ATVBAHA.111.225623

    Article  CAS  Google Scholar 

  39. Roman MJ, Saba PS, Pini R, Spitzer M, Pickering TG, Rosen S et al (1992) Parallel cardiac and vascular adaptation in hypertension. Circulation 86(6):1909–1918

    Article  CAS  PubMed  Google Scholar 

  40. Ye S, Eriksson P, Hamsten A, Kurkinen M, Humphries SE, Henney AM et al (1996) Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J Biol Chem 271(22):13055–13060

    Article  CAS  PubMed  Google Scholar 

  41. Medley TL, Kingwell BA, Gatzka CD, Pillay P, Cole TJ (2003) Matrix metalloproteinase-3 genotype contributes to age-related aortic stiffening through modulation of gene and protein expression. Circ Res 92(11):1254–1261. https://doi.org/10.1161/01.RES.0000076891.24317.CA

    Article  CAS  PubMed  Google Scholar 

  42. Beyzade S, Zhang S, Wong YK, Day IN, Eriksson P, Ye S (2003) Influences of matrix metalloproteinase-3 gene variation on extent of coronary atherosclerosis and risk of myocardial infarction. J Am Coll Cardiol 41(12):2130–2137

    Article  CAS  PubMed  Google Scholar 

  43. Cavusoglu E, Marmur JD, Kassotis JT, Yanamadala S, Chopra V, Eng C (2016) Usefulness of plasma matrix metalloproteinase-3 levels to predict myocardial infarction in men with and without acute coronary syndrome. Am J Cardiol 117(6):881–886. https://doi.org/10.1016/j.amjcard.2015.12.022

    Article  CAS  PubMed  Google Scholar 

  44. Shlipak MG, Katz R, Kestenbaum B, Fried LF, Siscovick D, Sarnak MJ (2009) Clinical and subclinical cardiovascular disease and kidney function decline in the elderly. Atherosclerosis 204(1):298–303. https://doi.org/10.1016/j.atherosclerosis.2008.08.016

    Article  CAS  PubMed  Google Scholar 

  45. Zeisberg M, Neilson EG (2010) Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 21(11):1819–1834. https://doi.org/10.1681/ASN.2010080793

    Article  CAS  PubMed  Google Scholar 

  46. Ogata Y, Enghild JJ, Nagase H (1992) Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem 267(6):3581–3584

    CAS  PubMed  Google Scholar 

  47. Kang YS, Li Y, Dai C, Kiss LP, Wu C, Liu Y (2010) Inhibition of integrin-linked kinase blocks podocyte epithelial–mesenchymal transition and ameliorates proteinuria. Kidney Int 78(4):363–373. https://doi.org/10.1038/ki.2010.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barbaresko J, Koch M, Schulze MB, Nöthlings U (2013) Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr Rev 71(8):511–527. https://doi.org/10.1111/nure.12035

    Article  PubMed  Google Scholar 

  49. Chase AJ, Newby AC (2003) Regulation of matrix metalloproteinase (matrixin) genes in blood vessels: a multi-step recruitment model for pathological remodelling. J Vasc Res 40:329–343. https://doi.org/10.1159/000072697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from the “Ministry of High Education, Scientific Research and Technologies of Tunisia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monia Allal-Elasmi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guizani, I., Zidi, W., Zayani, Y. et al. Matrix metalloproteinase-3 predicts clinical cardiovascular outcomes in patients with coronary artery disease: a 5 years cohort study. Mol Biol Rep 46, 4699–4707 (2019). https://doi.org/10.1007/s11033-019-04914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04914-4

Keywords

Navigation