Skip to main content

Advertisement

Log in

Expression analysis and genotyping of DGKZ: a GWAS-derived risk gene for schizophrenia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Schizophrenia (SCZ) is a disabling and severe mental illness characterized by abnormal social behavior and disrupted emotions. Similar to other neuropsychological disorders, both genetics and environmental factors interplay so as to develop SCZ. It is acknowledged that genes such as DGKZ are involved in lipid signaling pathways that are the basis of neural activities, memory, and learning and are considered as candidate loci for SCZ. The aim of the present study was to evaluate the expression level and genotypes of DGKZ in patients with SCZ and controls. We used q-PCR to measure the relative expression of DGKZ in blood. To determine DGKZ–rs7951870 genotypes, tetra-ARMS PCR was used. Our results showed a significant difference in DGKZ mRNA ratio between SCZ patients and healthy controls (P = 2 × 10−4). Also, we showed that rs7951870-TT genotype was strongly associated with increased DGKZ expression level (P = 0.038). In conclusion, our findings revealed dysregulation of DGKZ in SCZ patients and a significant correction between the gene expression and DGKZ variant rs7951870.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ettinger U et al (2014) Genetics, cognition, and neurobiology of schizotypal personality: a review of the overlap with schizophrenia. Front Psychiatry 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  2. Messias EL, Chen C-Y, Eaton WW (2007) Epidemiology of schizophrenia: review of findings and myths. Psychiatry Clin North Am 30(3):323–338

    Article  Google Scholar 

  3. Cheng C et al (2013) Birth seasonality in schizophrenia: effects of gender and income status. Psychiatry Clin Neurosci 67(6):426–433

    Article  PubMed  Google Scholar 

  4. Pedersen CB et al (2014) The importance of father’s age to schizophrenia risk. Mol Psychiatry 19(5):530

    Article  CAS  PubMed  Google Scholar 

  5. Gejman PV, Sanders AR, Duan J (2010) The role of genetics in the etiology of schizophrenia. Psychiatry Clin North Am 33(1):35–66

    Article  Google Scholar 

  6. Ripke S et al (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421

    Article  CAS  PubMed Central  Google Scholar 

  7. Kavanagh D et al (2015) Schizophrenia genetics: emerging themes for a complex disorder. Mol Psychiatry 20(1):72

    Article  CAS  PubMed  Google Scholar 

  8. Kim Y et al (2011) Schizophrenia genetics: where next? Schizophr Bull 37(3):456–463

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ruzzo EK, Geschwind DH (2016) Schizophrenia genetics complements its mechanistic understanding. Nat Neurosci 19(4):523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mirendil H et al (2015) LPA signaling initiates schizophrenia-like brain and behavioral changes in a mouse model of prenatal brain hemorrhage. Transl Psychiatry 5(4):e541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vogt J et al (2016) Molecular cause and functional impact of altered synaptic lipid signaling due to a prg-1 gene SNP. EMBO Mol Med 8(1):25–38

    Article  CAS  PubMed  Google Scholar 

  12. Müller CP et al (2015) Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta 1851(8):1052–1065

    Article  CAS  PubMed  Google Scholar 

  13. Wong CT, Wais J, Crawford DA (2015) Prenatal exposure to common environmental factors affects brain lipids and increases risk of developing autism spectrum disorders. Eur J Neurosci 42(10):2742–2760

    Article  PubMed  Google Scholar 

  14. Yung YC et al (2015) Lysophosphatidic acid signaling in the nervous system. Neuron 85(4):669–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sakane F, Mizuno S, Komenoi S (2016) Diacylglycerol kinases as emerging potential drug targets for a variety of diseases: an update. Front Cell Dev Biol 4:82

    Article  PubMed  PubMed Central  Google Scholar 

  16. Topham MK, Prescott SM (1999) Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J Biol Chem 274(17):11447–11450

    Article  CAS  PubMed  Google Scholar 

  17. Ishisaka M, Hara H (2014) The roles of diacylglycerol kinases in the central nervous system: review of genetic studies in mice. J Pharmacol Sci 124(3):336–343

    Article  CAS  PubMed  Google Scholar 

  18. Bergen SE, Petryshen TL (2012) Genome-wide association studies (GWAS) of schizophrenia: does bigger lead to better results? Curr Opin Psychiatry 25(2):76

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hall MH et al (2014) Neurophysiologic effect of GWAS derived schizophrenia and bipolar risk variants. Am J Med Genet B 165(1):9–18

    Article  CAS  Google Scholar 

  20. Ikeda M et al (2011) Genome-wide association study of schizophrenia in a Japanese population. Biol Psychiatry 69(5):472–478

    Article  PubMed  Google Scholar 

  21. Potkin SG et al (2008) A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr Bull 35(1):96–108

    Article  PubMed  PubMed Central  Google Scholar 

  22. Goes FS et al (2015) Genome-wide association study of schizophrenia in Ashkenazi Jews. Am J Med Genet B 168(8):649–659

    Article  CAS  Google Scholar 

  23. Fromer M et al (2016) Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci 19(11):1442–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim S et al (2007) Suicide candidate genes associated with bipolar disorder and schizophrenia: an exploratory gene expression profiling analysis of post-mortem prefrontal cortex. BMC Genom 8(1):413

    Article  Google Scholar 

  25. Sinclair D et al (2012) Glucocorticoid receptor 1B and 1C mRNA transcript alterations in schizophrenia and bipolar disorder, and their possible regulation by GR gene variants. PLoS ONE 7(3):e31720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ye S et al (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29(17):e88–e88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Raben DM, Tu-Sekine B (2008) Nuclear diacylglycerol kinases: regulation and roles. Front Biosci 13:590–597

    Article  CAS  PubMed  Google Scholar 

  28. Weidenhofer J et al (2006) Altered gene expression in the amygdala in schizophrenia: up-regulation of genes located in the cytomatrix active zone. Mol Cell Neurosci 31(2):243–250

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J et al (2004) Neural system-enriched gene expression: relationship to biological pathways and neurological diseases. Physiol Genom 18(2):167–183

    Article  CAS  Google Scholar 

  30. Hosak L (2013) New findings in the genetics of schizophrenia. World J Psychiatry 3(3):57

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lencz T et al (2007) Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci 104(50):19942–19947

    Article  PubMed  Google Scholar 

  32. Rietschel M et al (2012) Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol Psychiatry 17(9):906–917

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt-Kastner R et al (2006) Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophr Res 84(2):253–271

    Article  PubMed  Google Scholar 

  34. Ip HF et al (2018) Characterizing the relation between expression QTLs and complex traits: exploring the role of tissue specificity. Behav Genet 48(5):374–385

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim Y et al (2014) A meta-analysis of gene expression quantitative trait loci in brain. Transl Psychiatry 4(10):e459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johari A et al (2019) The rs1986112 Variant is Associated with Increased RAB8B Gene Expression in Schizophrenic Patients. Clin Lab. https://doi.org/10.7754/Clin.Lab.2018.180832

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The present work was partially supported by Shahid Beheshti University of Medical Sciences (Tehran, Iran) and Semnan University of Medical Sciences (Semnan, Iran).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Darvish or Hamid Ghaedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alinaghi, S., Alehabib, E., Johari, A.H. et al. Expression analysis and genotyping of DGKZ: a GWAS-derived risk gene for schizophrenia. Mol Biol Rep 46, 4105–4111 (2019). https://doi.org/10.1007/s11033-019-04860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04860-1

Keywords

Navigation