Advertisement

The newly developed single nucleotide polymorphism (SNP) markers for a potentially medicinal plant, Crepidiastrum denticulatum (Asteraceae), inferred from complete chloroplast genome data

  • Hoang Dang Khoa Do
  • Joonhyung Jung
  • JongYoung Hyun
  • Seok Jeong Yoon
  • Chaejin Lim
  • Keedon Park
  • Joo-Hwan KimEmail author
Original Article
  • 106 Downloads

Abstract

Medicinal effects of Crepidiastrum denticulatum have been previously reported. However, the genomic resources of this species and its applications have not been studied. In this study, based on the next generation sequencing method (Miseq sequencing system), we characterize the chloroplast genome of C. denticulatum which contains a large single copy (84,112 bp) and a small single copy (18,519 bp), separated by two inverted repeat regions (25,074 bp). This genome consists of 80 protein-coding gene, 30 tRNAs, and four rRNAs. Notably, the trnT_GGU is pseudogenized because of a small insertion within the coding region. Comparative genomic analysis reveals a high similarity among Asteraceae taxa. However, the junctions between LSC, SSC, and IRs locate in different positions within rps19 and ycf1 among examined species. Also, we describe a newly developed single nucleotide polymorphism (SNP) marker for C. denticulatum based on amplification‐refractory mutation system (ARMS) technique. The markers, inferred from SNP in rbcL and matK genes, show effectiveness to recognize C. denticulatum from other related taxa through simple PCR protocol. The chloroplast genome-based molecular markers are effective to distinguish a potentially medicinal species, C. denticulatum, from other related taxa. Additionally, the complete chloroplast genome of C. denticulatum provides initial genomic data for further studies on phylogenomics, population genetics, and evolutionary history of Crepidiastrum as well as other taxa in Asteraceae.

Keywords

Cichorieae Comparative genomic analysis Molecular identification 

Notes

Acknowledgements

This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea. (Grant No. HN15C0105). We thank anonymous reviewers for valuable comments to improve this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11033_2019_4789_MOESM1_ESM.docx (361 kb)
Supplementary material 1 (DOCX 361 kb)
11033_2019_4789_MOESM2_ESM.docx (39 kb)
Supplementary material 2 (DOCX 38 kb)

References

  1. 1.
    Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168.  https://doi.org/10.1007/978-94-011-2656-4_10 Google Scholar
  2. 2.
    Han EH, Cho K, Goo Y, Kim MB, Shin Y-W, Kim Y-H, Lee SW (2016) Development of molecular markers, based on chloroplast and ribosomal DNA regions, to discriminate three popular medicinal plant species, Cynanchum wilfordii, Cynanchum auriculatum, and Polygonum multiflorum. Mol Biol Rep 43:323.  https://doi.org/10.1007/s11033-016-3959-1 Google Scholar
  3. 3.
    Ismail NA, Rafii MY, Mahmud TMM, Hanafi MM, Miah G (2016) Molecular markers: a potential resource for ginger genetic diversity studies. Mol Biol Rep 43:1347.  https://doi.org/10.1007/s11033-016-4070-3 Google Scholar
  4. 4.
    Bishoyi AK, Kavane A, Sharma A, Geetha KA (2017) A report on identification of sequence polymorphism in barcode region of six commercially important Cymbopogon species. Mol Biol Rep 44:19.  https://doi.org/10.1007/s11033-017-4097-0 Google Scholar
  5. 5.
    Salomo K, Smith JF, Field TS, Samain MS, Bond L, Davidson C, Zimmers J, Neinhuis C, Wanke S (2017) The emergence of earliest angiosperms may be earlier than fossil evidence indicates. Syst Bot 42(4):607–619.  https://doi.org/10.1600/036364417X696438 Google Scholar
  6. 6.
    Farruggia FT, Lavin M, Wojciechowsk MF (2018) Phylogenetic systematics and biogeography of the pantropical genus Sesbania (Leguminosae). Syst Bot 43(2):414–429.  https://doi.org/10.1600/036364418X697175 Google Scholar
  7. 7.
    Kim JS, Kim J-H (2018) Updated molecular phylogenetic analysis, dating and biogeographical history of the lily family (Liliaceae: Liliales). Bot J Linn Soc 187(4):579–593.  https://doi.org/10.1093/botlinnean/boy031 Google Scholar
  8. 8.
    Do HDK, Kim JS, Kim JH (2014) A trnI_CAU triplication event in the complete chloroplast genome of Paris verticillataM.Bieb. (Melanthiaceae, Liliales). Genome Biol Evol 6(7):1699–1706.  https://doi.org/10.1093/gbe/evu138 Google Scholar
  9. 9.
    Kim JK, Park JY, Lee YS, Lee HO, Park HS, Lee SC, Kang JH, Lee TJ, Sung SH, Yang TJ (2016) The complete chloroplast genome sequence of the Taraxacum officinale F.H.Wigg (Asteraceae). Mitochondr DNA Part B 1(1):228–229.  https://doi.org/10.1080/23802359.2016.1155425 Google Scholar
  10. 10.
    Do HDK, Kim J-H (2017) A dynamic tandem repeat in monocotyledons inferred from a comparative analysis of chloroplast genomes in Melanthiaceae. Front Plant Sci 8:693.  https://doi.org/10.3389/fpls.2017.00693 Google Scholar
  11. 11.
    Choi IS, Choi BH (2017) The distinct plastid genome structure of Maackia fauriei (Fabaceae: Papilionoideae) and its systematic implications for genistoids and tribe Sophoreae. PLoS ONE 12(4):e0173766.  https://doi.org/10.1371/journal.pone.0173766 Google Scholar
  12. 12.
    Kim SC, Kim JS, Kim JH (2016) Insight into infrageneric circumscription through complete chloroplast genome sequences of two Trillium species. AoB PLANTS 8:plw015.  https://doi.org/10.1093/aobpla/plw015 Google Scholar
  13. 13.
    Leaché AD, Oaks JR (2017) The utility of single nucleotide polymorphism (SNP) data in phylogenetics. Annu Rev Ecol Evol S 48(1):69–84.  https://doi.org/10.1146/annurev-ecolsys-110316-022645 Google Scholar
  14. 14.
    Little S (1995) Amplification-refractory mutation system (ARMS) analysis of point mutations. Curr Protoc Hum Genet 7(1):9.8.1–9.8.12.  https://doi.org/10.1002/0471142905.hg0908s07 Google Scholar
  15. 15.
    Kim JS, Jang HW, Kim JS, Kim HJ, Kim JH (2012) Molecular identification of Schisandra chinensis and its allied species using multiplex PCR based on SNPs. Genes Genom 34:283.  https://doi.org/10.1007/s13258-011-0201-3 Google Scholar
  16. 16.
    Tharachand C, Immanuel Selvaraj C, Mythili MN (2012) Molecular markers in characterization of medicinal plants: an overview. Res Plant Biol 2(2):01–12Google Scholar
  17. 17.
    Koc S, Isgor BS, Isgor YG, Shomali Moghaddam N, Yildirim O (2015) The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets. Pharm Biol 53(5):746–751.  https://doi.org/10.3109/13880209.2014.942788 Google Scholar
  18. 18.
    Son J-C, Kim S-H, Lee S-I, Lee Y-K, Kim S-D (2012) Effect of ethanol extracts of Youngia denticulata and Youngia sonchifolia on the serum and hepatic lipids and activities of ethanol metabolizing enzymes in acute ethanol-treated rats. J Korean Soc Food Sci Nutr 41(2):197–204.  https://doi.org/10.3746/jkfn.2012.41.2.197 Google Scholar
  19. 19.
    Ahn HR, Lee HJ, Kim KA, Kim CY, Nho CW, Jang H, Pan CH, Lee CY, Jung SH (2014) Hydroxycinnamic acids in Crepidiastrum denticulatum protect oxidative stress-induced retinal damage. J Agr Food Chem 62(6):1310–1323.  https://doi.org/10.1021/jf4046232 Google Scholar
  20. 20.
    Yoo J-H, Kang K, Yun JH, Kim MA, Nho CW (2014) Crepidiastrum denticulatum extract protects the liver against chronic alcohol-induced damage and fat accumulation in rats. J Med Food 17(4):432–438.  https://doi.org/10.1089/jmf.2013.2799 Google Scholar
  21. 21.
    Kim M, Park YG, Lee H-J, Lim SJ, Ahn HR, Jung SH, Nho CW (2015) Youngia denticulata attenuates diet-induced obesity-related metabolic dysfunctions by activating AMP-activated protein kinase and regulating lipid metabolism. J Funct Food 18(A):714–726.  https://doi.org/10.1016/j.jff.2015.09.002 Google Scholar
  22. 22.
    Kim M, Yoo G, Randy A, Kim HS, Nho CW (2017) Chicoric acid attenuate a nonalcoholic steatohepatitis by inhibiting key regulators of lipid metabolism, fibrosis, oxidation, and inflammation in mice with methionine and choline deficiency. Mol Nutr Food Res 61(5):1613–4125.  https://doi.org/10.1002/mnfr.201600632 Google Scholar
  23. 23.
    Timme RE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot 94:302–312.  https://doi.org/10.3732/ajb.94.3.302 Google Scholar
  24. 24.
    Curci PL, De Paola D, Danzi D, Vendramin GG, Sonnante G (2015) Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other asteraceae. PLoS ONE 10(3):e0120589.  https://doi.org/10.1371/journal.pone.0120589 Google Scholar
  25. 25.
    Shen X, Guo S, Yin Y, Zhang J, Yin X, Liang C, Wang Z, Huang B, Liu Y, Xiao ZhuG (2018) Complete chloroplast genome sequence and phylogenetic analysis of Aster tataricus. Molecules 23(10):E2426.  https://doi.org/10.3390/molecules23102426 Google Scholar
  26. 26.
    Torres-Martínez L, Emery NC (2016) Genome-wide SNP discovery in the annual herb, Lasthenia fremontii (Asteraceae): genetic resources for the conservation and restoration of a California vernal pool endemic. Conserv Genet Resour 8:145–158.  https://doi.org/10.1007/s12686-016-0524-0 Google Scholar
  27. 27.
    Luo Z, Iaffaldano BJ, Zhuang X, Fresnedo-Ramírez J, Cornish K (2017) Analysis of the first Taraxacum kok-saghyz transcriptome reveals potential rubber yield related SNPs. Sci Rep 7:9939.  https://doi.org/10.1038/s41598-017-09034-2 Google Scholar
  28. 28.
    Blanc-Jolivet C, Kersten B, Bourland N, Guichoux E, Delcamp A, Doucet J-L, Degen B (2018) Development of nuclear SNP markers for the timber tracking of the African tree species Sapelli, Entandrophragma cylindricum. Conserv Genet Resour 10:539.  https://doi.org/10.1007/s12686-017-0872-4 Google Scholar
  29. 29.
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  30. 30.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Drummond A (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649.  https://doi.org/10.1093/bioinformatics/bts199 Google Scholar
  31. 31.
    Lowe TM, Chan PP (2016) tRNAscan-SE On-line: search and contextual analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57.  https://doi.org/10.1093/nar/gkw413 Google Scholar
  32. 32.
    Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I (2000) VISTA: visualizing global dna sequence alignments of arbitrary length. Bioinformatics 16:1046.  https://doi.org/10.1093/bioinformatics/16.11.1046 Google Scholar
  33. 33.
    Christoph M (2006) Phobos 3.3.11. <http://www.rub.de/ecoevo/cm/cm_phobos.htm>
  34. 34.
    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3 - new capabilities and interfaces. Nucleic Acids Res 40(15):e115.  https://doi.org/10.1093/nar/gks596 Google Scholar
  35. 35.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797.  https://doi.org/10.1093/nar/gkh340 Google Scholar
  36. 36.
    Lo YM (1998) The amplification refractory mutation system. Methods Mol Med 16:61–69.  https://doi.org/10.1385/0-89603-499-2:61 Google Scholar
  37. 37.
    Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol 66(4):350–361.  https://doi.org/10.1007/s00239-008-9086-4 Google Scholar
  38. 38.
    Lin C-P, Wu C-S, Huang Y-Y, Chaw S-M (2012) The Complete Chloroplast Genome of Ginkgo biloba Reveals the Mechanism of Inverted Repeat Contraction. Genome Biol Evol 4(3):374–381.  https://doi.org/10.1093/gbe/evs021 Google Scholar
  39. 39.
    Lee DH, Cho WB, Choi BH, Lee JH (2017) Characterization of two complete chloroplast genomes in the tribe Gnaphalieae (Asteraceae): gene loss or pseudogenization of trnT-GGU and implications for phylogenetic relationships. Hortic Sci Technol 35(6):769–783.  https://doi.org/10.12972/kjhst.20170081 Google Scholar
  40. 40.
    Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM (2008) Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 8:36.  https://doi.org/10.1186/1471-2148-8-36 Google Scholar
  41. 41.
    Huang YY, Matzke AJM, Matzke M (2013) Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS ONE 8(8):e74736.  https://doi.org/10.1371/journal.pone.0074736 Google Scholar
  42. 42.
    Luo J, Hou BW, Niu ZT, Liu W, Xue QY, Ding XY (2014) Comparative chloroplast genomes of photosynthetic orchids: insights into evolution of the orchidaceae and development of molecular markers for phylogenetic applications. PLoS ONE 9(6):e99016.  https://doi.org/10.1371/journal.pone.0099016 Google Scholar
  43. 43.
    Ma J, Yang B, Zhu W, Sun L, Tian J, Wan X (2013) The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms. Gene 528(2):120–131.  https://doi.org/10.1016/j.gene.2013.07.037 Google Scholar
  44. 44.
    de Santa Lopes A, Pacheco GT, Nimz T, do Nascimento Vieira L, Guerra MP, Nodari RO, de Souza ME, de Oliveira Pedrosa F, Rogalski M (2018) The complete plastome of macaw extensive molecular analyses of the evolution of plastid genes in Arecaceae. Planta 247:1011.  https://doi.org/10.1007/s00425-018-2841-x Google Scholar
  45. 45.
    Pacheco GT, de Lopes SA, Viana MGD, da Silva NO, da Silva MG, do Nascimento Vieira L, Guerra MP, Nodari OR, de Souza ME, de Oliveira Pedrosa F, Otoni WC, Rogalski M (2018) Genetic, evolutionary and phylogenetic aspects of the plastome of annatto (Bixa orellana L.), the Amazonian commercial species of natural dyes. Planta.  https://doi.org/10.1007/s00425-018-3023-6 Google Scholar
  46. 46.
    Peng Y, Zhang Y, Gao X, Tong L, Lisss L, Lisss RY, Zhu ZM, Xian J (2014) A phylogenetic analysis and new delimitation of Crepidiastrum (Asteraceae, tribe Cichorieae). Phytoyaxa 159(4):241–255.  https://doi.org/10.11646/phytotaxa.159.4.1 Google Scholar
  47. 47.
    Fu Z, Jiao B, Nie B, Zhang G, Gao T, China Phylogeny Consortium (2016) A comprehensive generic level phylogeny of the sunflower family: Implications for the systematics of Chinese Asteraceae. J Syst Evol 54:416–437.  https://doi.org/10.1111/jse.12216 Google Scholar
  48. 48.
    Ohashi H, Ohashi K (2007) Hybrids in Crepidiastrum (Asteraceae). J Jpn Bot 82:337–347Google Scholar
  49. 49.
    Yamamotoa N, Okihito OY, Ikedab H (2009) A new hybrid, Crepidiastrum × semiauriculatum (Asteraceae: Lactuceae), from Okayama Prefecture, Western Japan. J Jpn Bot 84:224–228Google Scholar
  50. 50.
    Qin Z, Wang Y, Wang Q, Li A, Hou F, Zhang L (2015) Evolution analysis of simple sequence repeats in plant genome. PLoS ONE 10(12):e0144108.  https://doi.org/10.1371/journal.pone.0144108 Google Scholar
  51. 51.
    Fontúrbel FE, Murúa MM, Vega-Retter C (2016) Development of ten microsatellite markers from the keystone mistletoe Tristerix corymbosus (Loranthaceae) using 454 next generation sequencing and their applicability to population genetic structure studies. Mol Biol Rep 43:339.  https://doi.org/10.1007/s11033-016-3970-6 Google Scholar
  52. 52.
    Ossa CG, Larridon I, Peralta G, Asselman P, Pérez F (2016) Development of microsatellite markers using next-generation sequencing for the columnar cactus Echinopsis chiloensis (Cactaceae). Mol Biol Rep 43:1315.  https://doi.org/10.1007/s11033-016-4069-9 Google Scholar
  53. 53.
    Vieira ML, Santini L, Diniz AL, Munhoz Cde F (2016) Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 39(3):312–328.  https://doi.org/10.1590/1678-4685-GMB-2016-0027 Google Scholar
  54. 54.
    Zhu S, Ding Y, Yap Z, Qiu Y (2016) De novo assembly and characterization of the floral transcriptome of an economically important tree species, Lindera glauca (Lauraceae), including the development of EST-SSR markers for population genetics. Mol Biol Rep 43:1243.  https://doi.org/10.1007/s11033-016-4056-1 Google Scholar
  55. 55.
    Oh A, Oh BU (2017) Development and characterization of 24 chloroplast microsatellite markers for two species of Eranthis (Ranunculaceae). Mol Biol Rep 44:359.  https://doi.org/10.1007/s11033-017-4117-0 Google Scholar
  56. 56.
    Aranguren-Díaz YC, Varani AM, Michael TP, Miranda VFO (2018) Development of microsatellite markers for the carnivorous plant Genlisea aurea (Lentibulariaceae) using genomics data of NGS. Mol Biol Rep 45:57.  https://doi.org/10.1007/s11033-017-4140-1 Google Scholar
  57. 57.
    Gong W, Ma L, Gong P, Liu X, Wang Z, Zhao G (2018) Development and application of EST–SSRs markers for analysis of genetic diversity in erect milkvetch (Astragalus adsurgens Pall.). Mol Biol Rep.  https://doi.org/10.1007/s11033-018-4484-1 Google Scholar
  58. 58.
    Klichowska E, Ślipiko M, Nobis M, Szczecińska M (2018) Development and characterization of microsatellite markers for endangered species Stipa pennata (Poaceae) and their usefulness in intraspecific delimitation. Mol Biol Rep 45:639.  https://doi.org/10.1007/s11033-018-4192-x Google Scholar
  59. 59.
    Waikham P, Thongkumkoon P, Chomdej S, Liu A, Wangpakapattanawong P (2018) Development of 13 microsatellite markers for Castanopsis tribuloides (Fagaceae) using next-generation sequencing. Mol Biol Rep 45:27.  https://doi.org/10.1007/s11033-017-4137-9 Google Scholar
  60. 60.
    Zhang X, Zhou Y, Li YL, Liu J-X (2018) Development of microsatellite markers for the seagrass Zostera japonica using next-generation sequencing. Mol Biol Rep.  https://doi.org/10.1007/s11033-018-4491-2 Google Scholar
  61. 61.
    Ishikawa N, Sakaguchi S, Ito M (2016) Development and characterization of SSR markers for Aster savatieri (Asteraceae). Appl Plant Sci 4(6):1500143.  https://doi.org/10.3732/apps.1500143 Google Scholar
  62. 62.
    Gutiérrez-Larruscain D, Malvar Ferreras T, Martínez-Ortega MM, Rico E, Andrés-Sánchez S (2018) SSR markers for Filago subg. Filago (Gnaphalieae: Asteraceae) and cross-amplification in three other subgenera. Appl Plant Sci 6(8):e01171.  https://doi.org/10.1002/aps3.1171 Google Scholar
  63. 63.
    Han Z, Ma X, Wei Min, Zhao T, Zhan R, Chen W (2018) SSR marker development and intraspecific genetic divergence exploration of Chrysanthemum indicum based on transcriptome analysis. BMC Genom 19:291.  https://doi.org/10.1186/s12864-018-4702-1 Google Scholar
  64. 64.
    Iqbal A, Sadaqat HA, Khan AS, Amjad M (2010) Identification of sunflower (Helianthus annuus, Asteraceae) hybrids using simple-sequence repeat markers. Genet Mol Res 10(1):102–106.  https://doi.org/10.4238/vol10-1gmr918 Google Scholar
  65. 65.
    Turchetto C, Segatto ACA, Beduschi J, Bonatto SL, Freitas LB (2015) Genetic differentiation and hybrid identification using microsatellite markers in closely related wild species. AoB Plants 7(1):plv084.  https://doi.org/10.1093/aobpla/plv084 Google Scholar
  66. 66.
    Zhao X, Zhang J, Zhang Z, Wang Y, Xie W (2017) Hybrid identification and genetic variation of Elymus sibiricus hybrid populations using EST-SSR markers. Hereditas 154:15.  https://doi.org/10.1186/s41065-017-0053-1 Google Scholar
  67. 67.
    Han Z, Geng X, Du K, Xu C, Yao P, Bai F, Kang X (2018) Analysis of genetic composition and transmitted parental heterozygosity of natural 2n gametes in Populus tomentosa based on SSR markers. Planta 247:1407.  https://doi.org/10.1007/s00425-018-2871-4 Google Scholar
  68. 68.
    Lv T, Teng R, Shao Q, Wang H, Zhang W, Li M, Zhang L (2015) Planta 242:1167.  https://doi.org/10.1007/s00425-015-2353-x Google Scholar
  69. 69.
    Olejniczak SA, Łojewska E, Kowalczyk T, Sakowicz T (2016) Chloroplasts: state of research and practical applications of plastome sequencing. Planta 244:517.  https://doi.org/10.1007/s00425-016-2551-1 Google Scholar
  70. 70.
    Yu M, Jiao L, Guo J, Wiedenhoeft AC, He T, Jiang X, Yin Y (2017) DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species. Planta 246:1165.  https://doi.org/10.1007/s00425-017-2758-9 Google Scholar
  71. 71.
    Garrido-Cardenas JA, Mesa-Valle C, Manzano-Agugliaro F (2018) Trends in plant research using molecular markers. Planta 247(3):543–557.  https://doi.org/10.1007/s00425-017-2829-y Google Scholar
  72. 72.
    Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Grando MS (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39.  https://doi.org/10.1186/1471-2229-13-39 Google Scholar
  73. 73.
    Park H, Yoon CY, Kim JS, Kim JH (2015) Molecular identification of Reynoutria japonica Houtt. and R. sachalinensis (F. Schmidt) Nakai using SNP sites. Korean J Plant Resour 28(6):743–751.  https://doi.org/10.7732/kjpr.2015.28.6.743 Google Scholar
  74. 74.
    Bieniek W (2015) Mizianty M (2015) Sequence variation at the three chloroplast loci (matK, rbcL, trnH-psbA) in the Triticeae tribe (Poaceae): comments on the relationships and utility in DNA barcoding of selected species. Plant Syst Evol 301:1275–1286.  https://doi.org/10.1007/s00606-014-1138-1 Google Scholar
  75. 75.
    Ohsako T, Ohnishi O (2001) Nucleotide sequence variation of the chloroplast trnK/matK region in two wild Fagopyrum (Polygonaceae) species, F. leptopodum and F. statice. Genes Genet Syst 76:39–46.  https://doi.org/10.1266/ggs.76.39 Google Scholar
  76. 76.
    Kim WJ, Ji Y, Choi G, Kang YM, Yang S, Moon BC (2016) Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences. Genet Mol Res.  https://doi.org/10.4238/gmr.15038472 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Life ScienceGachon UniversitySeongnamRepublic of Korea
  2. 2.Incospharm CorpDaejeonRepublic of Korea

Personalised recommendations