Skip to main content
Log in

Is there any correlation between apoptotic genes expression in cumulus cells with embryo morphokinetics?

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim was to assess the correlation between apoptotic genes of cumulus cells (CCs) with embryo morphokinetics as non invasive methods for embryo selection. Evaluation of cleavage activity among in vitro-fertilized embryos was dependent on determining not only expression profiles of pro- and anti-apoptotic genes in CCs surrounding ovulated oocytes but also morphokinetic parameters such as time of second PB extrusion (tPB2), pronuclei appearance (tPN), pronuclei fading (tPNf), formation of two to eight cells (t2–t8) and cleavage pattern [uneven at two cells stage, cell fusion (Fu) and trichomonas mitoses (TM)]. A total of 269 embryos from 90 intracytoplasmic sperm injection (ICSI) cycles were assessed. The data showed that t2 was associated with CCs expression of Bax, Caspase3 Bcl2 and bax/bcl2 (p = 0.000, p = 0.000, p = 0.04, p = 0.00, respectively). Uneven blastomeres embryo associated with Bax and Caspase3 (p = 0.007, p = 0.000 respectively) as well as Fu and TM embryo significantly correlated to CCs expression of Bax, Caspase3 Bcl2 and bax/bcl2 (p = 0.000, p = 0.000, p = 0.00, p = 0.00, respectively) (p = 0.006, p = 0.000, p = 0.009, p = 0.0340, respectively). Embryo morphokinetics and cleavage pattern associated with CCs apoptotic gene expression. It seems that embryo selection by morphokinetics assessment using TLM with conjunction in CCs gene expression can improve ART outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fowler KE, Mandawala AA, Griffin DK, Walling GA, Harvey SC (2018) The production of pig preimplantation embryos in vitro: current progress and future prospects. Reprod Biol 18:203–211

    Article  PubMed  Google Scholar 

  2. Kim HJ, Yoon HJ, Jang JM, Lee WD, Yoon SH et al (2017) Evaluation of human embryo development in in vitro fertilization-and intracytoplasmic sperm injection-fertilized oocytes: a time-lapse study. Clin Exp Reprod Med 44:90–95

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fawzy M, Emad M, Mahran A, Sabry M, Fetih AN et al (2018) Artificial oocyte activation with SrCl2 or calcimycin after ICSI improves clinical and embryological outcomes compared with ICSI alone: results of a randomized clinical trial. Hum Reprod 33:1636–1644

    Article  CAS  PubMed  Google Scholar 

  4. Sfontouris IA, Nastri CO, Lima ML, Tahmasbpourmarzouni E, Raine-Fenning N et al (2015) Artificial oocyte activation to improve reproductive outcomes in women with previous fertilization failure: a systematic review and meta-analysis of RCTs. Hum Reprod 30:1831–1841

    Article  PubMed  Google Scholar 

  5. Samiec M, Skrzyszowska M (2018) Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Pol J Vet Sci 21:217–227

    CAS  PubMed  Google Scholar 

  6. Hashimoto S, Morimoto N, Yamanaka M, Matsumoto H, Yamochi T et al (2017) Quantitative and qualitative changes of mitochondria in human preimplantation embryos. J Assist Reprod Genet 34:573–580

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yovich JL, Craft IL (2018) Founding pioneers of IVF: independent innovative researchers generating livebirths within 4 years of the first birth. Reprod Biol 18:317–323

    Article  PubMed  Google Scholar 

  8. Tannus S, Son W-Y, Gilman A, Younes G, Shavit T et al (2016) The role of intracytoplasmic sperm injection in non-male factor infertility in advanced maternal age. Hum Reprod 32:119–124

    PubMed  Google Scholar 

  9. Wirka KA, Chen AA, Conaghan J, Ivani K, Gvakharia M et al (2014) Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertil Steril 101(1637–1648):e1635

    Google Scholar 

  10. Faramarzi A, Khalili MA, Omidi M, Agha-Rahimi A, Taheri F (2018) Pronuclear pattern does not predict morphokinetics behavior in human embryos. Gynecol Endocrinol 34:248–251

    Article  PubMed  Google Scholar 

  11. Faramarzi A, Khalili MA, Ashourzadeh S (2017) Oocyte morphology and embryo morphokinetics in an intra-cytoplasmic sperm injection programme. Is there a relationship? Zygote 25:190–196

    Article  CAS  PubMed  Google Scholar 

  12. Faramarzi A, Khalili MA, Omidi M (2017) Morphometric analysis of human oocytes using time lapse: does it predict embryo developmental outcomes? Hum Fertil 24:1–6

    Google Scholar 

  13. Faramarzi A, Khalili MA, Ashourzadeh S, Palmerini MG (2018) Does rescue in vitro maturation of germinal vesicle stage oocytes impair embryo morphokinetics development? Zygote 26:430–434

    Article  CAS  PubMed  Google Scholar 

  14. Faramarzi A, Khalili MA, Agha-Rahimi A, Omidi M (2017) Is there any correlation between oocyte polarization microscopy findings with embryo time lapse monitoring in ICSI program? Arch Gynecol Obstet 295:1515–1522

    Article  PubMed  Google Scholar 

  15. Kidder GM, Vanderhyden BC (2010) Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol 88:399–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krysko D, Leybaert L, Vandenabeele P, D’Herde K (2005) Gap junctions and the propagation of cell survival and cell death signals. Apoptosis 10:459–469

    Article  CAS  PubMed  Google Scholar 

  17. Lin D, Ran J, Zhu S, Quan S, Ye B et al (2017) Effect of GOLPH3 on cumulus granulosa cell apoptosis and ICSI pregnancy outcomes. Sci Rep 7:7863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Assou S, Haouzi D, Mahmoud K, Aouacheria A, Guillemin Y et al (2008) A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod 14:711–719

    Article  CAS  PubMed  Google Scholar 

  19. Assou S, Boumela I, Haouzi D, Anahory T, Dechaud H et al (2010) Dynamic changes in gene expression during human early embryo development: from fundamental aspects to clinical applications. Hum Reprod Update 17:272–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wells D, Patrizio P (2008) Gene expression profiling of human oocytes at different maturational stages and after in vitro maturation. Am J Obstet Gynecol 198:455.e1–455.e11

    Article  CAS  Google Scholar 

  21. Brenner C, Exley G, Alikani M, Cohen J, McElhinny A et al (1997) Apoptosis and human embryo survival. Fertil Steril 1001:S86

    Article  Google Scholar 

  22. Pru JK, Kaneko-Tarui T, Jurisicova A, Kashiwagi A, Selesniemi K et al (2009) Induction of proapoptotic gene expression and recruitment of p53 herald ovarian follicle loss caused by polycyclic aromatic hydrocarbons. Reprod Sci 16:347–356

    Article  CAS  PubMed  Google Scholar 

  23. Slot KA, Voorendt M, de Boer-Brouwer M, van Vugt HH, Teerds KJ (2006) Estrous cycle dependent changes in expression and distribution of Fas, Fas ligand, Bcl-2, Bax, and pro-and active caspase-3 in the rat ovary. J Endocrinol 188:179–192

    Article  CAS  PubMed  Google Scholar 

  24. Fujino K, Yamashita Y, Hayashi A, Asano M, Morishima S et al (2008) Survivin gene expression in granulosa cells from infertile patients undergoing in vitro fertilization–embryo transfer. Fertil Steril 89:60–65

    Article  CAS  PubMed  Google Scholar 

  25. Assou S, Haouzi D, De Vos J, Hamamah S (2010) Human cumulus cells as biomarkers for embryo and pregnancy outcomes. MHR Basic Sci Reprod Med 16:531–538

    Article  CAS  Google Scholar 

  26. Assou S, Haouzi D, Dechaud H, Gala A, Ferrières A et al (2013) Comparative gene expression profiling in human cumulus cells according to ovarian gonadotropin treatments. Biomed Res Int 2013:354582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li S-H, Lin M-H, Hwu Y-M, Lu C-H, Yeh L-Y et al (2015) Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development. Reprod Biol Endocrinol 13:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nivet A, Léveillé M, Leader A, Sirard M (2016) Transcriptional characteristics of different sized follicles in relation to embryo transferability: potential role of hepatocyte growth factor signalling. MHR Basic Sci Reprod Med 22:475–484

    Article  CAS  Google Scholar 

  29. Kahraman S, Çetinkaya CP, Çetinkaya M, Tüfekçi MA, Ekmekçi CG et al (2018) Is there a correlation between follicle size and gene expression in cumulus cells and is gene expression an indicator of embryo development? Reprod Biol Endocrinol 16:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Faramarzi A, Khalili MA, Soleimani M (2015) First successful pregnancies following embryo selection using time-lapse technology in Iran: case report. Iran J Reprod Med 13:237

    PubMed  PubMed Central  Google Scholar 

  31. Adamson GD, Abusief ME, Palao L, Witmer J, Palao LM et al (2016) Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse–enabled test to aid in embryo selection. Fertil Steril 105(369–375):e366

    Google Scholar 

  32. Ciray HN, Campbell A, Agerholm IE, Aguilar J, Chamayou S et al (2014) Proposed guidelines on the nomenclature and annotation of dynamic human embryo monitoring by a time-lapse user group. Hum Reprod 29:2650–2660

    Article  PubMed  Google Scholar 

  33. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grupen CG, Armstrong DT (2010) Relationship between cumulus cell apoptosis, progesterone production and porcine oocyte developmental competence: temporal effects of follicular fluid during IVM. Reprod Fertil Dev 22:1100–1109

    Article  CAS  PubMed  Google Scholar 

  35. Høst E, Mikkelsen AL, Lindenberg S, Smidt-Jensen S (2000) Apoptosis in human cumulus cells in relation to maturation stage and cleavage of the corresponding oocyte. Acta Obstet Gynecol Scand 79:936–940

    Article  PubMed  Google Scholar 

  36. Høst E, Gabrielsen A, Lindenberg S, Smidt-Jensen S (2002) Apoptosis in human cumulus cells in relation to zona pellucida thickness variation, maturation stage, and cleavage of the corresponding oocyte after intracytoplasmic sperm injection. Fertil Steril 77:511–515

    Article  PubMed  Google Scholar 

  37. Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH et al (2001) Clinical assisted reproduction: cumulus cells apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF–ET. J Assist Reprod Genet 18:490–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raman RS, Chan PJ, Corselli JU, Patton WC, Jacobson JD et al (2001) Comet assay of cumulus cell DNA status and the relationship to oocyte fertilization via intracytoplasmic sperm injection. Hum Reprod 16:831–835

    Article  CAS  PubMed  Google Scholar 

  39. Tabibnejad N, Aflatoonian A, Motamedzadeh L, Soleimani M, Sadeghian-Nodoushan F et al (2018) Assessing ICSI outcome by combining non-invasive indicators: early time-lapse morphokinetics and apoptosis in associated cumulus cells among women with the polycystic ovarian syndrome. Mol Reprod Dev 85:865–874

    Article  CAS  PubMed  Google Scholar 

  40. Motato Y, de los Santos MJ, Escriba MJ, Ruiz BA, Remohí J et al (2016) Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertil Steril 105(376–384):e379

    Google Scholar 

  41. Liu Y, Chapple V, Feenan K, Roberts P, Matson P (2015) Clinical significance of intercellular contact at the four-cell stage of human embryos, and the use of abnormal cleavage patterns to identify embryos with low implantation potential: a time-lapse study. Fertil Steril 103(1485–1491):e1481

    Google Scholar 

  42. Lemmen J, Agerholm I, Ziebe S (2008) Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online 17:385–391

    Article  CAS  PubMed  Google Scholar 

  43. Meseguer M, Herrero J, Tejera A, Hilligsøe KM, Ramsing NB et al (2011) The use of morphokinetics as a predictor of embryo implantation. Hum Reprod 26:2658–2671

    Article  PubMed  Google Scholar 

  44. Cruz M, Garrido N, Herrero J, Pérez-Cano I, Muñoz M et al (2012) Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod Biomed Online 25:371–381

    Article  PubMed  Google Scholar 

  45. Desai N, Ploskonka S, Goodman LR, Austin C, Goldberg J et al (2014) Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles. Reprod Biol Endocrinol 12:54

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu Y, Chapple V, Roberts P, Matson P (2014) Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the embryoscope time-lapse video system. Fertil Steril 102(1295–1300):e1292

    Google Scholar 

  47. Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J et al (2012) Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril 98:1458–1463

    Article  PubMed  Google Scholar 

  48. Almagor M, Or Y, Fieldust S, Shoham Z (2015) Irregular cleavage of early preimplantation human embryos: characteristics of patients and pregnancy outcomes. J Assist Reprod Genet 32:1811–1815

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fragouli E, Wells D, Iager AE, Kayisli UA, Patrizio P (2012) Alteration of gene expression in human cumulus cells as a potential indicator of oocyte aneuploidy. Hum Reprod 27:2559–2568

    Article  CAS  PubMed  Google Scholar 

  50. Warner CM, Cao W, Exley GE, McElhinny AS, Alikani M et al (1998) Genetic regulation of egg and embryo survival. Hum Reprod 13:178–190

    Article  PubMed  Google Scholar 

  51. Papler TB, Bokal EV, Lovrecic L, Kopitar AN, Maver A (2015) No specific gene expression signature in human granulosa and cumulus cells for prediction of oocyte fertilisation and embryo implantation. PLoS ONE 10:e0115865

    Article  CAS  Google Scholar 

  52. Salavati M, Ghafari F, Zhang T, Fouladi-Nashta AA (2012) Effects of oxygen concentration on in vitro maturation of canine oocytes in a chemically defined serum-free media. Reproduction 144:547–556

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the colleagues who helped with the experiments and data collection.

Author information

Authors and Affiliations

Authors

Contributions

AF has performed the experiments and written the paper. MK has designed the experiments and revised the manuscript. MGJ has analyzed the data. All authors have given approval of the final version of the manuscript.

Corresponding author

Correspondence to Mohammad Ali Khalili.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest and no declaration of interest.

Ethical approval

Ethics Committee of Shahid Sadoughi University of Medical Sciences approved this study (IR.SSU.RSI.REC.1395.2). Informed consent was obtained from every patient.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faramarzi, A., Khalili, M.A. & Jahromi, M.G. Is there any correlation between apoptotic genes expression in cumulus cells with embryo morphokinetics?. Mol Biol Rep 46, 3663–3670 (2019). https://doi.org/10.1007/s11033-019-04781-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04781-z

Keywords

Navigation