Skip to main content
Log in

A study on optimization of pat gene expression cassette for maize transformation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Phosphinothricin acetyltransferase gene (pat) is an important selectable marker and also a key herbicide trait gene in several commercial products. In maize, the transformation frequency (TF) using pat as a selectable marker is the lowest among the commonly used marker options including epsps, pmi or ppo. Low pat transformation efficiency can become a major bottleneck in our ability to efficiently produce large numbers of events, especially for large molecular stack vectors with multiple trait gene cassettes. The root cause of the lower efficiency of pat in maize is not well understood and it is possible that the causes are multifaceted, including maize genotype, pat marker cassette, trait gene combinations and selection system. In this work we have identified a new variant of pat gene through codon optimization that consistently produced a higher transformation frequency (> 2x) than an old version of the pat gene that has codons optimized for expression in dicot plants. The level of PAT protein in all 16 constructs was also found multifold higher (up to 40 fold) over that of the controls. All of the T0 low copy transgenic plants generated from the 16 different constructs showed excellent tolerance to ammonium glufosinate herbicide spray tests at 4x and 8x recommended field application rates (1x = 595 g active ingredient (ai)/hectare of ammonium glufosinate) in the greenhouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Angov E (2011) Codon usage: nature’s roadmap to expression and folding of proteins. Biotechnol J 6:650–659. https://doi.org/10.1002/biot.201000332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bevan M, Barnes WM, Chilton MD (1983) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res 11:369–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Block M et al (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duncan DB (1957) Multiple range tests for correlated and heteroscedastic means. Biometrics 13:164–176. https://doi.org/10.2307/2527799

    Article  Google Scholar 

  5. Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–134 (136–140)

    Article  CAS  PubMed  Google Scholar 

  6. Ishida Y (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  7. Jayne S, Barbour E, Meyer T (2000) Methods for improving transformation efficiency. US Patent 6,096,947

  8. Jia M, Li Y (2005) The relationship among gene expression, folding free energy and codon usage bias in Escherichia coli. FEBS Lett 579:5333–5337. https://doi.org/10.1016/j.febslet.2005.08.059

    Article  CAS  PubMed  Google Scholar 

  9. Joshi CP, Zhou H, Huang X, Chiang VL (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol 35:993–1001. https://doi.org/10.1023/a:1005816823636

    Article  CAS  PubMed  Google Scholar 

  10. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Volrath SL, Nicholl DB, Chilcott CE, Johnson MA, Ward ER, Law MD (2003) Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol 133:736–747. https://doi.org/10.1104/pp.103.026245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lindsey K (1992) Genetic manipulation of crop plants. J Biotechnol 26:1–28. https://doi.org/10.1016/0168-1656(92)90067-J

    Article  CAS  Google Scholar 

  13. Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ (1997) Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res 6:143–156

    Article  CAS  PubMed  Google Scholar 

  14. Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987. https://doi.org/10.1093/jexbot/53.370.979

    Article  CAS  PubMed  Google Scholar 

  15. Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  PubMed  Google Scholar 

  16. Nuccio ML et al (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33:862–869

    Article  CAS  PubMed  Google Scholar 

  17. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  18. Ow DW, Jacobs JD, Howell SH (1987) Functional regions of the cauliflower mosaic virus 35S RNA promoter determined by use of the firefly luciferase gene as a reporter of promoter activity. Proc Natl Acad Sci USA 84:4870–4874

    Article  CAS  PubMed  Google Scholar 

  19. Perl A, Galili S, Shaul O, Ben-Tzvi I, Galili G (1993) Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation. Bio/Technol. 11:715. https://doi.org/10.1038/nbt0693-715

    Article  CAS  Google Scholar 

  20. Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42. https://doi.org/10.1038/nrg2899

    Article  CAS  PubMed  Google Scholar 

  21. Que Q et al (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1:220–229. https://doi.org/10.4161/gmcr.1.4.13439

    Article  PubMed  Google Scholar 

  22. Que Q et al (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:379. https://doi.org/10.3389/fpls.2014.00379

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sivamani E, Starmer JD, Qu R (2009) Sequence analysis of rice rubi3 promoter gene expression cassettes for improved transgene expression. Plant Sci 177:549–556. https://doi.org/10.1016/j.plantsci.2009.08.006

    Article  CAS  Google Scholar 

  24. Strauch E, Wohlleben W, Puhler A (1988) Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tu494 and its expression in Streptomyces lividans and Escherichia coli. Gene 63:65–74

    Article  CAS  PubMed  Google Scholar 

  25. Tijssen P (1985) Practice and theory of enzyme immunoassays. Elsevier Science, New York

    Google Scholar 

  26. Webster GR, Teh AY, Ma JK (2017) Synthetic gene design-The rationale for codon optimization and implications for molecular pharming in plants. Biotechnol Bioeng 114:492–502

    Article  CAS  PubMed  Google Scholar 

  27. Wenck A et al (2003) Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22:244–251. https://doi.org/10.1007/s00299-003-0690-x

    Article  CAS  PubMed  Google Scholar 

  28. Wohlleben W, Arnold W, Broer I, Hillemann D, Strauch E, Puhler A (1988) Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tu494 and its expression in Nicotiana tabacum. Gene 70:25–37

    Article  CAS  PubMed  Google Scholar 

  29. Wright M et al (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436. https://doi.org/10.1007/s002990100318

    Article  CAS  PubMed  Google Scholar 

  30. Zhong H et al (2018) Advances in Agrobacterium-mediated maize transformation. Methods Mol Biol 1676:41–59. https://doi.org/10.1007/978-1-4939-7315-6_3

    Article  CAS  PubMed  Google Scholar 

  31. Ziemienowicz A (2001) Plant selectable markers and reporter genes. Acta Physiol Plant 23:363–374. https://doi.org/10.1007/s11738-001-0045-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Help rendered by Rachel Whinna, Pei Su, Ping Wu, Sabrina Patton, Melissa Murray, Jamie McCuiston, Yaping Jiang, Lucy Qin and Yoshimi Barron towards this work are gratefully acknowledged. We are thankful to Liang Shi, Heng Zhong and Kasi Azhakanandam for project support and technical discussions, respectively.

Funding

The study was funded by Syngenta’s internal resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elumalai Sivamani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (XLSX 11 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivamani, E., Nalapalli, S., Prairie, A. et al. A study on optimization of pat gene expression cassette for maize transformation. Mol Biol Rep 46, 3009–3017 (2019). https://doi.org/10.1007/s11033-019-04737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04737-3

Keywords