Advertisement

Molecular Biology Reports

, Volume 46, Issue 3, pp 3487–3496 | Cite as

oxLDL inhibits differentiation of mesenchymal stem cells into osteoblasts via the CD36 mediated suppression of Wnt signaling pathway

  • Damilola Dawodu
  • Margret Patecki
  • Inna Dumler
  • Hermann Haller
  • Yulia KiyanEmail author
Short Communication
  • 179 Downloads

Abstract

Bone abnormalities as a consequence of osteoblast deregulation are associated with several diseases such as diabetes and chronic kidney disease. Important role for oxidized low density lipoproteins (oxLDL) in the pathophysiology of bone disorders has been reported. However, little is known about the effects and mechanisms of oxLDL on the process of osteoblastogenesis in human mesenchymal stem cells (MSCs). We show that oxLDL concentrations of ~ 10–25 µg protein (0.43–1.0 µM MDA/mg protein) inhibited the differentiation of MSCs to osteoblasts. We demonstrate that the underlying mechanism entails the suppression of the Wnt signaling through the down-regulation of β-catenin. Further, we show the association of scavenger receptor CD36 with the receptors LRP5/6 and Frizzled in mediating the oxLDL effects on the differentiation of MSCs to pre-osteoblasts. Inhibiting CD36 restored osteoblasts differentiation in the presence of oxLDL. Our findings suggest that oxLDL interferes with the canonical Wnt signaling pathway in a CD36 dependent manner leading to an inhibition of osteoblastogenesis.

Keywords

OxLDL Mesenchymal stem cells (MSCs) Osteoblast differentiation Wnt signaling CD36 

Notes

Acknowledgements

We are grateful to Frank Hausadel and Birgit Habermeyer for excellent technical assistance. The work was supported by the Grant from Elsbeth Bonhoff Stiftung (Berlin, Germany).

Supplementary material

11033_2019_4735_MOESM1_ESM.docx (335 kb)
Supplementary material 1 (DOCX 335 KB)

References

  1. 1.
    Lerner U (2012) Osteoblats, osteoclasts, and osteocytes: unveiling their intimate-associated responses to applied orthodontic forces. Sem Orthodont 18:237–248CrossRefGoogle Scholar
  2. 2.
    Kevorkova O, Martineau C, Martin-Falstrault L, Sanchez-Dardon J, Brissette L, Moreau R (2013) Low-bone-mass phenotype of deficient mice for the cluster of differentiation 36 (CD36). PLoS ONE 8:e77701CrossRefGoogle Scholar
  3. 3.
    Yamashita T, Takahashi N, Udagawa N (2012) New roles of osteoblasts involved in osteoclast differentiation. World J Orthoped 3:175–181CrossRefGoogle Scholar
  4. 4.
    Marie PJ (2015) Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies. Cell Mol Life Sci 72:1347–1361CrossRefGoogle Scholar
  5. 5.
    Marcellini S, Henriquez JP, Bertin A (2012) Control of osteogenesis by the canonical Wnt and BMP pathways in vivo: cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes. BioEssays 34:953–962CrossRefGoogle Scholar
  6. 6.
    Kim JH, Liu X, Wang J et al (2013) Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskeletal Dis 5:13–31CrossRefGoogle Scholar
  7. 7.
    Al-Hariri M (2016) Sweet bones: the pathogenesis of bone alteration in diabetes. J Diabetes Res 2016:6969040CrossRefGoogle Scholar
  8. 8.
    Luxon BA (2011) Bone disorders in chronic liver diseases. Curr Gastroenterol Rep 13:40–48CrossRefGoogle Scholar
  9. 9.
    Moderate B (2009) 1: Diagnosis of CKD-MBD: biochemical abnormalities. Kidney Int 76113:S22–S49Google Scholar
  10. 10.
    Itabe H (2012) Oxidized low-density lipoprotein as a biomarker of in vivo oxidative stress: from atherosclerosis to periodontitis. J Clin Biochem Nutr 51:1–8CrossRefGoogle Scholar
  11. 11.
    Levitan I, Volkov S, Subbaiah PV. Oxidized LDL (2010) Diversity, patterns of recognition, and pathophysiology. Antioxid Redox Sign 13:39–75CrossRefGoogle Scholar
  12. 12.
    Montagnani A, Gonnelli S, Cepollaro C et al (2003) Changes in serum HDL and LDL cholesterol in patients with paget’s bone disease treated with pamidronate. Bone 32:15–19CrossRefGoogle Scholar
  13. 13.
    Baldini V, Mastropasqua M, Francucci CM, D’Erasmo E (2005) Cardiovascular disease and osteoporosis. J Endocrinol Invest 28:69–72Google Scholar
  14. 14.
    Sennerby U, Melhus H, Gedeborg R et al (2009) Cardiovascular diseases and risk of hip fracture. JAMA 302:1666–1673CrossRefGoogle Scholar
  15. 15.
    Garcia-Bonilla L, Park L, Iadecola C (2014) Commentary on Myers et al.: growing role of the innate immunity receptor CD36 in central nervous system diseases. Exp Neurol 261:633–637CrossRefGoogle Scholar
  16. 16.
    Bae UJ, Yang JD, Ka SO et al (2014) SPA0355 attenuates ischemia/reperfusion-induced liver injury in mice. Exp Mol Med 46:e109CrossRefGoogle Scholar
  17. 17.
    Anaraki PK, Patecki M, Larmann J et al (2014) Urokinase receptor mediates osteogenic differentiation of mesenchymal stem cells and vascular calcification via the complement C5a receptor. Stem Cells Dev 23:352–362CrossRefGoogle Scholar
  18. 18.
    Fuhrman B, Partoush A, Volkova N, Aviram M (2008) Ox-LDL induces monocyte-to-macrophage differentiation in vivo: possible role for the macrophage colony stimulating factor receptor (M-CSF-R). Atherosclerosis 196:598–607CrossRefGoogle Scholar
  19. 19.
    Aviram M (1983) Plasma lipoprotein separation by discontinuous density gradient ultracentrifugation in hyperlipoproteinemic patients. Biochem Med 30:111–118CrossRefGoogle Scholar
  20. 20.
    Sabokbar A, Millett PJ, Myer B, Rushton NA, Rapid (1994) Quantitative assay for measuring alkaline-phosphatase activity in osteoblastic cells in-vitro. Bone Miner 27:57–67CrossRefGoogle Scholar
  21. 21.
    Suzuki K, Bose P, Leong-Quong RY, Fujita DJ, Riabowol K (2010) REAP: a two minute cell fractionation method. BMC Res Notes 3:294CrossRefGoogle Scholar
  22. 22.
    Dawodu D, Patecki M, Hegermann J, Dumler I, Haller H, Kiyan Y (2018) oxLDL inhibits differentiation and functional activity of osteoclasts via scavenger receptor—a mediated autophagy and cathepsin K secretion. Sci Rep UK 8:11604CrossRefGoogle Scholar
  23. 23.
    Tang L, Chen Y, Pei F, Zhang H (2015) Lithium chloride modulates adipogenesis and osteogenesis of human bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem 37:143–152CrossRefGoogle Scholar
  24. 24.
    Wang L, Chai Y, Li C et al (2018) Oxidized phospholipids are ligands for LRP6. Bone Res 6:22CrossRefGoogle Scholar
  25. 25.
    Boullier A, Friedman P, Harkewicz R et al (2005) Phosphocholine as a pattern recognition ligand for CD36. J Lipid Res 46:969–976CrossRefGoogle Scholar
  26. 26.
    Gaur T, Lengner CJ, Hovhannisyan H et al (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280:33132–33140CrossRefGoogle Scholar
  27. 27.
    Liu G, Vijayakumar S, Grumolato L et al (2009) Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. J Cell Biol 185:67–75CrossRefGoogle Scholar
  28. 28.
    Xin Ye PY, Zhang J, Sun Q, Ge S, Zhang Xu (2016) Oxidized phospholipids inhibit cnaonical Wnt signaling and ostoeblast differentation via ERK activation. Int J Clin Exp Pathol 9:7941–7950Google Scholar
  29. 29.
    He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131:1663–1677CrossRefGoogle Scholar
  30. 30.
    Rac ME, Safranow K, Poncyljusz W (2007) Molecular basis of human CD36 gene mutations. Mol Med 13:288–296CrossRefGoogle Scholar
  31. 31.
    Brodeur MR, Brissette L, Falstrault L, Luangrath V, Moreau R (2008) Scavenger receptor of class B expressed by osteoblastic cells are implicated in the uptake of cholesteryl ester and estradiol from LDL and HDL3. J Bone Miner Res 23:326–337CrossRefGoogle Scholar
  32. 32.
    Staines KA, Zhu D, Farquharson C, MacRae VE (2014) Identification of novel regulators of osteoblast matrix mineralization by time series transcriptional profiling. J Bone Miner Metab 32:240–251CrossRefGoogle Scholar
  33. 33.
    Kuda O, Pietka TA, Demianova Z et al (2013) Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for intracellular calcium via binding CD36 lysine 164: SSO also inhibits oxidized low density lipoprotein uptake by macrophages. J Biol Chem 288:15547–15555CrossRefGoogle Scholar
  34. 34.
    Coort SL, Willems J, Coumans WA et al (2002) Sulfo-N-succinimidyl esters of long chain fatty acids specifically inhibit fatty acid translocase (FAT/CD36)-mediated cellular fatty acid uptake. Mol Cell Biochem 239:213–219CrossRefGoogle Scholar
  35. 35.
    Arriero Mdel M, Ramis JM, Perello J, Monjo M (2012) Differential response of MC3T3-E1 and human mesenchymal stem cells to inositol hexakisphosphate. Cell Physiol Biochem 30:974–986CrossRefGoogle Scholar
  36. 36.
    Nusse R, Clevers H (2017) Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999CrossRefGoogle Scholar
  37. 37.
    Zhao SJ, Jiang YQ, Xu NW et al (2017) SPARCL1 suppresses osteosarcoma metastasis and recruits macrophages by activation of canonical WNT/β-catenin signaling through stabilization of the WNT-receptor complex. Oncogene 37:1049CrossRefGoogle Scholar
  38. 38.
    Enciu AM, Radu E, Popescu ID, Hinescu ME, Ceafalan LC (2018) Targeting CD36 as biomarker for metastasis prognostic: how far from translation into clinical practice? Biomed Res Int 2018:7801202CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany

Personalised recommendations