Skip to main content

Advertisement

Log in

Role of ashwagandha methanolic extract in the regulation of thyroid profile in hypothyroidism modeled rats

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the anti-hypothyroidism potential of ashwagandha methanolic extract (AME). This target was performed through induction of animal model of hypothyroidism by propylthiouracil. After 1 month from treatments, blood samples were collected for biochemical determinations, and liver and kidney were removed for the determination of oxidative stress markers and thyroid gland was removed for histopathological examination. The total phenolic compounds in the extract and the in vitro radical scavenging activity of extract were also determined. The results revealed that the induction of hypothyroidism by propylthiouracil induced a significant increase in serum TSH level but it induced significant decreases in the levels of total T3, free T3, free T4, and total T4 hormones compared with the control values. Also, serum glucose, Il-6, and body weight gain increased significantly while Il-10 and blood hemoglobin levels showed significant decrease. Induction of hypothyroidism increased also the levels of hepatic and renal MDA and NO and decreased significantly the values of GSH, GPx and Na+/ K+-ATPase. Both AME and the anti-hypothyroidism drug significantly ameliorated the changes occurred in the levels of the above parameters and improved histological picture of thyroid gland but with different degrees; where ashwagandha methanolic extract showed the strongest effect. We can conclude that ashwagandha methanolic extract treatment improves thyroid function by ameliorating thyroid hormones and by preventing oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim B (2008) Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 18(2):141–144

    Article  CAS  PubMed  Google Scholar 

  2. Cachefo A,N,A, Boucher P, Vidon C, Dusserre E, Diraison F, Beylot M (2001) Hepatic lipogenesis and cholesterol synthesis in hyperthyroid patients. J Clin Endocrinol Metab 86(11):5353–5357

    Article  CAS  PubMed  Google Scholar 

  3. Saleh AB (2015) Lipid profile and levels of homocysteine and total antioxidant capacity in plasma of rats with experimental thyroid disorders. J Basic Appl Zool 72:173–178

    Article  CAS  Google Scholar 

  4. Ahmad S, Geraci SA, Koch CA (2013) Thyroid disease in pregnancy: (Women’s Health Series). South Med J 106:532–538

    Article  CAS  PubMed  Google Scholar 

  5. Tirosh D, Benshalom-Tirosh N, Novack L, Press F, Beer-Weisel R, Wiznitzer A, Mazor M, Erez O (2013) Hypothyroidism and diabetes mellitus—a risky dual gestational indocrinopathy. PeerJ 1:1–52

    Article  Google Scholar 

  6. Mannisto T, Mendola P, Grewal J, Xie Y, Chen Z, Laughon SK (2013) Thyroid diseases and adverse pregnancy outcomes in a contemporary US cohort. J Clin Endocrinol Metab 98:2725–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sharma S, Joshi A, Hemalatha S (2017) Protective effect of Withania coagulans fruit extract on cisplatin-induced nephrotoxicity in rats. Pharmacogn Res 9(4):354–361

    Article  CAS  Google Scholar 

  8. Srivastava S, Singh R, Srivastava G, Sharma A (2018) Comparative study of Withanolide biosynthesis-related miRNAs in root and leaf tissues of Withania somnifera. Appl Biochem Biotechnol 185:1145–1159

    Article  CAS  PubMed  Google Scholar 

  9. Oza VP, Parmar PP, Kumar S, Subramanian RB (2010) anticancer properties of highly purified L-Asparaginase from Withania somnifera L. against acute lymphoblastic leukemia. Appl Biochem Biotechnol 160:1833–1840

    Article  CAS  PubMed  Google Scholar 

  10. Bhattacharya SK, Muruganandam AV (2003) Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacol Biochem Behav 75(3):547–555

    Article  CAS  PubMed  Google Scholar 

  11. Devkar ST, Kandhare AD, Zanwar AA, Jagtap SD, Katyare SS, Bodhankar SL, Hegde MV (2016) Hepatoprotective effect of withanolide-rich fraction in acetaminophen-intoxicated rat: decisive role of TNF-α, IL-1β, COX-II and iNOS. Pharm Biol 54(11):2394–2403

    Article  CAS  PubMed  Google Scholar 

  12. Hoda Q, Ahmad S, Akhtar M, Najmi AK, Pillai KK, Ahmad S,J (2010) Antihyperglycaemic and antihyperlipidaemic effect of poly-constituents, in aqueous and chloroform extracts, of Withania coagulans Dunal in experimental type 2 diabetes mellitus in rats. Hum Exp Toxicol 29(8):653–658

    Article  PubMed  Google Scholar 

  13. Saxena B (2010) Anti-hyperlipidemic activity of Withania coagulans in streptozotocin-induced diabetes: a potent anti-atherosclerotic agent. Drug Discov Ther 4:334–340

    PubMed  Google Scholar 

  14. Ganesan K, Sehgal PK, Mandal AB, Sayeed S (2011) Protective effect of Withania somnifera and Cardiospermum halicacabum extracts against collagenolytic degradation of collagen. Appl Biochem Biotechnol 165:1075–1091

    Article  CAS  PubMed  Google Scholar 

  15. Jayaprakasha GK, Tamil S, Sakariah KK (2003) Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res Int 36(2):117–122

    Article  CAS  Google Scholar 

  16. Nogala-Kalucka M, Korczak J, Dratwia M, Lampart-Szczapa E, Siger A, Buchowski M (2005) Changes in antioxidant activity and free radical scavenging potential of rosemary extract and tocopherols in isolated rapeseed oil triacylglycerols during accelerated tests. Food Chem 93:227–235

    Article  CAS  Google Scholar 

  17. Rajasekar S, Elango R (2011) Estimation of alkaloid content of ashwagandha (Withania somnifera) with HPLC methods. J Exp Sci 2(5):39–41

    Google Scholar 

  18. Trivedi MK, Branton A, Trivedi D, Nayak G et al (2017) Liquid chromatography–mass spectrometry (LC-MS) analysis of Withania somnifera (ashwagandha) root extract treated with the energy of consciousness. Am J Quantum Chem Mol Spectrosc 1(1):21–30

    Google Scholar 

  19. Sahoo D, Roy A, Bhanja S, Chainy G (2008) Hypothyroidism impairs antioxidant defense system and testicular physiology during development and maturation. Gen Comp Endocrinol 156(1):63–70

    Article  CAS  PubMed  Google Scholar 

  20. Sultana N, Shimmi SC, Parash MTH, Akhtar J (2012) Effects of ashwagandha (Withania somnifera) root extract on some serum liver marker enzymes (AST, ALT) in gentamicin intoxicated rats. J Bangladesh Soc Physiol 7(1):1–7

    Article  Google Scholar 

  21. Kuznetsova LA, Derkach KV, Sharova TS, Bondareva VM, Shpakov AO (2015) Effect of long-term L-thyroxine treatment on the activity of NO-synthases in tissues of rats with obesity induced by high-fat diet. J Evol Biochem Physiol 51:485–494

    Article  CAS  Google Scholar 

  22. Drury RA, Wallington EA (1980) Carleton’s histological technique, 5th edn. Oxford University Press, New York

    Google Scholar 

  23. RuizLarnea MB, Leal AM, Liza M, Lacort M, de Groot H (1994) Antioxidant effects of estradiol and 2 hydroxyestradiol on iron induced lipid peroxidation of rat liver microsome. Steriod 59:383388

    Google Scholar 

  24. Tsakiris S, Angelogianni P, Schulpis KH, Belrakis P (2000) Protective effect of L-cysteine and glutathione on rat brain Na+/K+-ATPase inhibition induced by free radical. Z Naturforsch 55:271–277

    Article  CAS  Google Scholar 

  25. Sener G, Kabasakal L, Atasoy BM, Erzik C, Velioğlu-Oğünç A, Cetinel S, Contuk G, Gedik N, Yeğen BC (2006) Propylthiouracil-induced hypothyroidism protects ionizing radiation-induced multiple organ damage in rats. J Endocrinol 189:257–269

    Article  CAS  PubMed  Google Scholar 

  26. Pantos C, Malliopoulou V, Mourouzis I, Sfakianoudis K, Tzeis S, Doumba P, Xinaris C, Cokkinos AD, Carageorgiou H, Varonos DD, Cokkinos DV (2003) Propylthiouracil-induced hypothyroidism is associated with increased tolerance of the isolated rat heart to ischaemia-reperfusion. J Endocrinol 178:427–435

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L, Blomgren K, Kuhn HG, Cooper-Kuhn CM (2009) Effects of postnatal thyroid hormone deficiency on neurogenesis in the juvenile and adult rat. Neurobiol Dis 34(2):366–374

    Article  PubMed  CAS  Google Scholar 

  28. Umezu M, Kagabu S, Jiang J, Sato E (1998) Evaluation and characterization of congenital hypothyroidism in rdw dwarf rats. Lab Anim Sci 48(5):496–501

    CAS  PubMed  Google Scholar 

  29. Fumarola A, Di Fiore A, Dainelli M, Grani G, Calvanese A (2010) Medical treatment of hyperthyroidism: state of the art. Exp Clin Endocrinol 118:678–684

    Article  CAS  Google Scholar 

  30. Sue M, Akama T, Kawashima A, Nakamura H, Hara T, Tanigawa K, Wu H, Yoshihara A, Ishido Y, Hiroi N, Yoshino G, Kohn LD, Ishii N, Suzuki K (2012) Propylthiouracil increases sodium/iodide symporter gene expression and iodide uptake in rat thyroid cells in the absence of TSH. Thyroid 22(8):844–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chakrabarti SK, Ghosh S, Banerjee S, Mukherjee S, Chowdhury S (2016) Oxidative stress in hypothyroid patients and the role of antioxidant supplementation. Indian J Endocrinol Metab 20(5):674–678

    Article  PubMed  PubMed Central  Google Scholar 

  32. Baskol G, Atmaca H, Tanriverdi F, Baskol M, Kocer D, Bayram F (2007) Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment. Exp Clin Endocrinol Diabetes 115:522–526

    Article  CAS  PubMed  Google Scholar 

  33. Lakshmi LJ, Mohapatra E, Zephy D, Kumari S (2013) Serum lipids and oxidative stress in hypothyroidism. J Adv Res Med Sci 5:63–66

    Google Scholar 

  34. Haribabu A, Reddy VS, Pallavi CH, Bitla AR, Sachan A, Pullaiah P, Suresh V, Rao PV, Suchitra MM (2013) Evaluation of protein oxidation and its association with lipid peroxidation and thyrotropin levels in overt and subclinical hypothyroidism. Endocrine 44:152–157

    Article  CAS  PubMed  Google Scholar 

  35. Mancini A, Segni CD, Raimondo S, Olivieri G, Silvestrini A, Meucci E, Currò. D.(2016).Thyroid hormones, oxidative stress, and inflammation. Mediat Inflamm. https://doi.org/10.1155/2016/6757154

    Article  Google Scholar 

  36. Erdogan M, Kösenli A, Ganidagli S, Kulaksizoglu M (2012) Characteristics of anemia in subclinical and overt hypothyroid patients. Endocr J 59:213–220

    Article  CAS  PubMed  Google Scholar 

  37. Ziauddin M, Phansalkar N, Patki P, Diwanay S, Patwardhan B (1996) Studies on the immunomodulatory effects of ashwagandha. J Ethnopharmacol 50:5069–5076

    Article  Google Scholar 

  38. Tian J, Cai T, Yuan Z, Wang H, Liu L, Haas M, Maksimova E, Huang XY, Xie ZJ (2006) Binding of Src to Na+/K+-ATPase forms a functional signaling complex. Mol Biol Cell 17:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dixon MF, Nimmo J, Prescott LF (1971) Experimental paracetamol-induced hepatic necrosis: a histopathological study. J Pathol 103:225–229

    Article  CAS  PubMed  Google Scholar 

  40. Masuda Y, Yano I, Sumida S, Murano T (1975) Studies on the function of cell membrane 10th Report: effects of CCl4 on the marker enzyme activities and fine structures of rat liver plasma membranes and microsomes in vitro. J Pharmacol, 25,151–160

    CAS  Google Scholar 

  41. Tayde PS, Bhagwat NM, Sharma P, Sharma B, Dalwadi PP, Sonawane A, Subramanyam A, Chadha M, Varthakavi PK (2017) Hypothyroidism and depression: are cytokines the link? Indian J Endocrinol Metab 21(6):886–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Türemen EE, Çetinarslan B, Sahin T, Cantürk Z, Tarkun I (2011) Endothelial dysfunction and low grade chronic inflammation in subclinical hypothyroidism due to autoimmune thyroiditis. Endocr J 58:349–354

    Article  PubMed  Google Scholar 

  43. Iyer A, Fairlie DP, Prins JB, Hammock BD, Brown L (2010) Inflammatory lipid mediators in adipocyte function and obesity. Nat Rev Endocrinol 6(2):71–82

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK (2008) Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity 16(10):2323–2330

    Article  PubMed  Google Scholar 

  45. Pucci E, Chiovato L, Pinchera A (2000) Thyroid and lipid metabolism. Intl J Obes 24(Suppl. 2):S109–S112

    Article  CAS  Google Scholar 

  46. Siemińska L, Wojciechowska C, Walczak K, Borowski A, Marek B, Nowak M, Kajdaniuk D, Foltyn W, Kos-Kudła B (2015) Associations between metabolic syndrome, serum thyrotropin, and thyroid antibodies status in postmenopausal women, and the role of interleukin-6. Endokrynol Pol 66(5):394–403

    Article  PubMed  Google Scholar 

  47. Liaw YF, Huang MJ, Fan KD, Li KL, Wu SS, Chen TJ (1993) Hepatic injury during propylthiouracil therapy in patients with hyperthyroidism: a cohort study. Ann Intern Med 118:424–428

    Article  CAS  PubMed  Google Scholar 

  48. Carrion AF, Czul F, Arosemena LR, Selvaggi G, Garcia MT, Tekin A, Tzakis AG, Martin P, Ghanta RK (2010) Propylthiouracil-induced acute liver failure: role of liver transplantation. Int J Endocrinol. https://doi.org/10.1155/2010/910636

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sarandol E, Tas S, Dirican M, Serdar Z (2005) Oxidative stress and serum paraoxonase activity in experimental hypothyroidism: effect of vitamin E supplementation. Cell Biochem Funct 23:1–8

    Article  PubMed  Google Scholar 

  50. Devkar ST, Badhe YS, Jagtap SD, Hedge MV (2012) Quantification of major bioactive withanolides in Withania somnifera (ashwagandha) roots by HPTLC for rapid validation of Ayurvedic products. J Planar Chromatogr 25:290–294

    Article  CAS  Google Scholar 

  51. Alam N, Hossain M, Khalil MI, Moniruzzaman M, Sulaiman SA, Gan SH (2011) High catechin concentrations detected in Withania somnifera (ashwagandha) by high performance liquid chromatography analysis. BMC Complement Altern Med 11:article 65,. https://doi.org/10.1186/1472-6882-11-65

    Article  CAS  Google Scholar 

  52. Saravanan G, Prakash J (2004) Effect of garlic (Allium sativum) on lipid peroxidation in experimental myocardial infarction in rats. J Ethnopharmacol 94(1):155–158

    Article  CAS  PubMed  Google Scholar 

  53. Jain R, Kachhwaha S, Kothari SL (2012) Phytochemistry, pharmacology, and biotechnology of Withania somnifera and Withania coagulans: a review. J Med Plants Res 6:5388–5399

    Article  Google Scholar 

  54. Uddin Q, Samiulla L, Singh VK, Jamil SS (2012) Phytochemical and pharmacological profile of Withania somnifera Dunal: a review. J Appl Pharm Sci 02(01):170–175

    Google Scholar 

  55. Gupta V, Keshari BB (2013) Withania coagulans Dunal (Paneer Doda): a review. Int J Ayurvedic Herb Med 3:1330–1336

    Google Scholar 

  56. Lee W, Kim TH, Ku SK, Min KJ, Lee HS, Kwon TK, Bae JS (2012) Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models. Toxicol Appl Pharmacol 262(1):91–98

    Article  CAS  PubMed  Google Scholar 

  57. Mathur D, Agrawal RC (2013) Anticarcinogenic potential of Withania coagulans fruit against skin papilomagenesis in Swiss albino mice. Rec Res Sci Technol 5:1–4

    Google Scholar 

  58. Li X, Zhu F, Jiang J, Sun C, Wang X, Shen M, Tian R, Shi C, Xu M, Peng F (2015) Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3 K/AKT pathway in human pancreatic cancer cells. Cancer Lett 357(1):219–230

    Article  CAS  PubMed  Google Scholar 

  59. Agarwal R, Diwanay S, Patki P, Patwardhan B (1999) Studies on immunomodulatory activity of Withania somnifera (ashwagandha) extracts in experimental immune inflammation. J Ethnopharmacol 67(1):27–35

    Article  CAS  PubMed  Google Scholar 

  60. Gupta SK, Mohanty I, Talwar KK, Dinda A, Joshi S, Bansal P, Saxena A, Arya DS (2004) Cardioprotection from ischemia and reperfusion injury by Withania somnifera: a hemodynamic, biochemical and histopathological assessment. Mol Cell Biochem 260(1–2):39–47

    PubMed  Google Scholar 

  61. Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN, Islam F (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24(3):137–147

    Article  PubMed  Google Scholar 

  62. Kar A, Panda S (2005) Plant extracts in the regulation of hypothyroidism. In: Sharma SK, Govil JN, Singh VK (eds) Recent progress in medicinal plants. Studium Press, Texas, pp 419–426

    Google Scholar 

  63. Panda S, Kar A (1999) Withania somnifera and Bauhinia purpurea in the regulation of circulating thyroid hormone concentrations in female mice. J Ethnopharmacol 67(2):233–239

    Article  CAS  PubMed  Google Scholar 

  64. Jatwa R, Kar A (2009) Amelioration of metformin-induced hypothyroidism by Withania somnifera and Bauhinia purpurea extracts in Type 2 diabetic mice. Phytother Res 23(8):1140–1145

    Article  PubMed  Google Scholar 

  65. Mohan R, Hammers HJ, Bargagna-Mohan P, Zhan XH, Herbstritt CJ, Ruiz A, Zhang L, Hanson AD, Conner BP, Rougas J, Pribluda VS (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7(2):115–122

    Article  CAS  PubMed  Google Scholar 

  66. Jackson SS, Oberley C, Hooper CP, Grindle K, Wuerzberger-Davis S, Wolff J, McCool K, Rui L, Miyamoto S (2015) Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-kappa B signaling. Exp Cell Res 331(1):58–72

    Article  CAS  PubMed  Google Scholar 

  67. Zhang X (2008) Interleukin-10: new perspectives on an old cytokine. Immunol Rev 226(1):205–218.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Devika PT, Prince PSM (2008) Epigallocatechin-gallate (EGCG) prevents mitochondrial damage in isoproterenol-induced cardiac toxicity in albino Wistar rats: a transmission electron microscopic and in vitro study. Pharmacol Res 57(5):351–357

    Article  CAS  PubMed  Google Scholar 

  69. Saravanan G, Ponmurugan P, Sathiyavathi M, Vadivukkarasi S, Sengottuvelu S (2013) Cardioprotective activity of Amaranthus viridis Linn: effect on serum marker enzymes, cardiac troponin and antioxidant system in experimental myocardial infarcted rats. Int J Cardiol 165(3):494–498

    Article  CAS  PubMed  Google Scholar 

  70. Alam N, Hossain M, Mottalib MA, Sulaiman SA, Gan SH, Khalil MI (2012) Methanolic extracts of Withania somnifera leaves, fruits and roots possess antioxidant properties and antibacterial activities. BMC Complement Altern Med. https://doi.org/10.1186/1472-6882-12-175

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ahmed W, Mofed D, Zekri AR, El-Sayed N, Rahouma M, Sabet S (2018) Antioxidant activity and apoptotic induction as mechanisms of action of Withania somnifera (ashwagandha) against a hepatocellular carcinoma cell line. J Int Med Res 46(4):1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the authorities of the National Research Centre, Giza, Egypt, for providing the facilities and supporting by the fund (Project Code: 11010331) to carry out this work.

Funding

This study was funded by the National Research Centre, Giza, Egypt (Grant Number: 11010331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled G. Abdel-Wahhab.

Ethics declarations

Conflict of interest

Khaled G. Abdel-Wahhab has received research a grant from National Research Centre, Cairo, Egypt. The authors declare that they have no conflict of interest.

Ethical approval

All animals received human care in compliance with the standard institutional criteria for the care and use of experimental animals according to the National Research Centre ethical committee (FWA 00014747).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Wahhab, K.G., Mourad, H.H., Mannaa, F.A. et al. Role of ashwagandha methanolic extract in the regulation of thyroid profile in hypothyroidism modeled rats. Mol Biol Rep 46, 3637–3649 (2019). https://doi.org/10.1007/s11033-019-04721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04721-x

Keywords

Navigation