Abstract
Melanoma is a cancer of melanocyte cells and has the highest global incidence. There is a need to develop new drugs for the treatment of this deadly cancer, which is resistant to currently used treatment modalities. We investigated the anticancer activity of visnagin, a natural furanochromone derivative, isolated from Ammi visnaga L., against malignant melanoma (HT 144) cell lines. The singlet oxygen production capacity of visnagin was determined by the RNO bleaching method while cytotoxic activity by the MTT assay. Further, HT 144 cells treated with visnagin were also exposed to visible light (λ ≥ 400 nm) for 25 min to examine the illumination cytotoxic activity. The apoptosis was measured by flow cytometry with annexin V/PI dual staining technique. The effect of TNF-α secretion on apoptosis was also investigated. In standard MTT assay, visnagin (100 µg/mL) exhibited 80.93% inhibitory activity against HT 144 cancer cell lines, while in illuminated MTT assay at same concentration it showed lesser inhibitory activity (63.19%). Visnagin was induced apoptosis due to the intracellular generation of reactive oxygen species (ROS) and showed an apoptotic effect against HT 144 cell lines by 25.88%. However, it has no effect on TNF-α secretion. Our study indicates that visnagin can inhibit the proliferation of malignant melanoma, apparently by inducing the intracellular oxidative stress.




Similar content being viewed by others
References
Bamhill RL, Fandrey K, Levy MA, Mihm ML, Hyman B (1992) Angiogenesis and tumor progression of melanoma. Quantification of vascularity in melanocytic nevi and cutaneous malign melanoma. Lab Invest 67:331–337
Watson M (2012) Drugs in clinical development for melanoma: summary and table. Pharm Med 26:171–183
Rogers HW, Weinstock MA, Hinckley MR, Feldman SR, Fleischer AB, Coldiron BM (2010) Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol 146:283–287
Matsuo Y, Kamitani T (2010) Parkinson’s disease-related protein, a-synuclein, in malignant melanoma. PLoS ONE 5:1–8
Disse M, Reich H, Lee PK, Schram SS (2016) A review of the association between parkinson disease and malignant melanoma. Dermatol Surg 42:141–146
Thompson JF, Scolyer RA, Kefford RF (2005) Cutaneous melanoma. Lancet 365:687–701
Batistatou A, Cook MG, Massi D (2009) Histopathology report of cutaneous melanoma and sentinel lymph node in Europe: a web-based survey by the Dermatopathology Working Group of the European Society of Pathology. Virchows Arch 454:505–511
Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22:3138–3151
Gunaydin K, Beyazit N (2004) The chemical investigations on the ripe fruits of Ammi visnaga (Lam.) Lamarck growing in Turkey. Nat Prod Res 18:169–175
Rauwald HW, Brehm O, Odenthal KP (1994) The Involvement of a Ca2+ channel blocking mode of action in the pharmacology of Ammi visnaga fruits. Planta Med 60:101–105
Martelli P, Bovalini L, Fe S, Franchi GG, Bari M (1985) Active oxygen forms in photoreaction between DNA and furanochromones khellin and visnagin. FEBS Lett 189:255–257
Chen X, Kagan J (1993) Photosensitized cleavage and cross-linking of pBR322 DNA with khellin and visnagin. J Photochem Photobiol B 20:183–189
Cuong TD, Lim CJ, Kim SW, Park JE, Hung TM, Min BS (2011) Isolation of compounds from Cimicifugae Rhizoma and their cytotoxic activity. Nat Prod Sci 17:80–84
El-Nakkady SS, Roaiah HF, El-Serwy WS, Soliman AM, El-Moez SIA, Abdel-Rahman AA-H (2012) Antitumor and antimicrobial activities of some hetero aromatic benzofurans derived from naturally occurring visnagin. Acta Pol Pharm 69:645–655
Pakfetrat H, Nemati N, Shiravi A (2015) Cytotoxicity effects of Ammi visnaga extract on Hela and MCF-7 cancer cell line. Anim Biol 7:25–33
Kraljic I, Mohsni S (1978) A new method for the detection of singlet oxygen in aqueous solutions. Photochem Photobiol 28:577–581
Aydoğmuş-Öztürk F, Günaydin K, Öztürk M, Jahan H, Duru ME, Choudhary MI (2018) Effect of Sideritis leptoclada against HT-144 human malignant melanoma. Melanoma Res 28:502–509
Wu D, Yotnda P (2011) Production and detection of reactive oxygen species (ROS) in cancer. J Vis Exp 57:1–4
Jahan H, Choudhary MI, Shah Z, Khan KM (2017) Derivatives of 6-nitrobenzimidazole inhibit fructose-mediated protein glycation and intracellular reactive oxygen species production. Med Chem 13:577–584
Vermes I, Haanen C, Steffensnakken H, Reutelingsperger C (1995) A novel assay for apoptosis-flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein-labeled annexin-V. J Immunol Methods 184:39–51
Iram N, Mildner M, Prior M, Petzelbauer P, Fiala C, Hacker S, Schoppl A, Tschachler E, Elbe-Burger A (2012) Age-related changes in expression and function of Toll-like receptors in human skin. Development 139:4210–4219
Bristow MR, Mason JW, Billingham ME, Daniels JR (1978) Doxorubicin cardiomyopathy: evaluation by phonocardiography, endomyocardial biopsy, and cardiac catheterization. Ann Intern Med 88:168–175
Xi L (2016) Visnagin—a new protectant against doxorubicin cardiotoxicity? Inhibition of mitochondrial malate dehydrogenase 2 (MDH2) and beyond. Ann Transl Med 4:65–69
Sayed H, Mohamed MH, Farag SF, Mohamed GA, Proksch P (2007) A New Steroid Glycoside and Furochromones from Cyperus rotundus L. Nat Prod Res 21:343–350
Beltagy AM, Beltagy DM (2015) Chemical composition of Ammi visnaga L. and new cytotoxic activity of its constituents khellin and visnagin. J Pharm Sci Res 7:285–291
Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox system and apoptosis. Free Radic Biol Med 48:749–762
Matthews N, Neale ML, Jackson SK, Stark JM (1987) Tumour cell killing by tumour necrosis factor: inhibition by anaerobic conditions, free-radical scavengers and inhibitors of arachidonate metabolism. Immunology 62:153–155
Larrick JW, Wright SC (1990) Cytotoxic mechanism of tumor necrosis factor-alpha. FASEB J 4:3215–3223
Shakibaei M, Schulze-Tanzil G, Takada Y, Aggarwal BB (2005) Redox regulation of apoptosis by members of the TNF superfamily. Antioxid Redox Signal 7:482–496
Acknowledgements
This study is a part of F.A.Ö’s Ph.D. thesis and was supported by the Research Fund of Istanbul University (Project Number: TP-19969). Prof. Dr. KerimanGünaydın would like to thank all staff of the Dr. Panjwani Center for Molecular Medicine and Drug Research (ICCBS), University of Karachi, Pakistan, for providing research facilities for her studies.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that is no conflicts of interest associated with this publication.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aydoğmuş-Öztürk, F., Jahan, H., Beyazit, N. et al. The anticancer activity of visnagin, isolated from Ammi visnaga L., against the human malignant melanoma cell lines, HT 144. Mol Biol Rep 46, 1709–1714 (2019). https://doi.org/10.1007/s11033-019-04620-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-019-04620-1


