The unfolded protein response controls endoplasmic reticulum stress-induced apoptosis of MCF-7 cells via a high dose of vitamin C treatment


Recent in vitro studies have shown that vitamin C (Vit C) with pro-oxidative properties causes cytotoxicity of breast cancer cells by selective oxidative stress. However, the effect of Vit C in itself at different concentration levels on MCF-7 breast cancer cell line after 24 h, has not yet been described. We aimed to examine the effect of Vit C on the viability and signalling response of MCF-7/WT (MCF-7 wild-type) cells that were exposed to various concentrations (0.125–4 mM) of Vit C during 24 h. The cytotoxic effect of Vit C on MCF-7/VitC (MCF-7/WT after added 2 mM Vit C) was observed, resulting in a decrease of cell index after 12 h. Also, the cytotoxicity of Vit C (2 mM) after 24 h was confirmed by flow cytometry, i.e., increase of dead, late apoptotic, and depolarized dead MCF-7/VitC cells compared to MCF-7/WT cells. Moreover, changes in proteomic profile of MCF-7/VitC cells compared to the control group were investigated via label-free quantitative mass spectrometry and post-translational modification. Using bioinformatics assessment (i.e., iPathwayGuide and SPIA R packages), a significantly impacted pathway in MCF-7/VitC was identified, namely the protein processing in endoplasmic reticulum. The semi-quantitative change (log2fold change = 4.5) and autophosphorylation at Thr-446 of protein kinase (PKR) (involved in this pathway) indicates that PKR protein could be responsible for the unfolded protein response and inhibition of the cell translation during endoplasmic reticulum stress, and eventually, for cell apoptosis. These results suggest that increased activity of PKR (Thr-446 autophosphorylation) related to cytotoxic effect of Vit C (2 mM) may cause the MCF-7 cells death.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    da Mata AMOF, de Carvalho RM, de Alencar MVOB et al (2016) Ascorbic acid in the prevention and treatment of cancer. Rev da Assoc Med Bras 62:680–686

    Article  Google Scholar 

  2. 2.

    Park S (2013) The effects of high concentrations of vitamin C on cancer cells. Nutrients 5:3496–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Takemura Y, Satoh M, Satoh K et al (2010) High dose of ascorbic acid induces cell death in mesothelioma cells. Biochem Biophys Res Commun 394:249–253

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Chen Q, Espey MG, Krishna MC et al (2005) Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci 102:13604–13609

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Creagan ET, Moertel CG, Fallon JR et al (1979) Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. N Engl J Med 301:687–690

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Moertel CG, Fleming TR, Creagan ET et al (1985) High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. N Engl J Med 312:137–141

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Benade L, Howard T, Burk D (1969) Synergistic killing of ehrlich ascites carcinoma cells by ascorbate and 3-amino-1,2,4,-triazole. Oncology 23:33–43

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Koch CJ, Biaglow JE (1978) Toxicity, radiation sensitivity modification, and metabolic effects of dehydroascorbate and ascorbate in mammalian cells. J Cell Physiol 94:299–306

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    McQuiston A, Diehl JA (2017) Recent insights into PERK-dependent signaling from the stressed endoplasmic reticulum. F1000Research 6:1897

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13:363–373

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Clemens MJ, Elia A (1997) The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interfaces Cytokine Res 17:503–524

    Article  CAS  Google Scholar 

  12. 12.

    Gil J, Esteban M (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5:107–114

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Ung TL (2001) Heterologous dimerization domains functionally substitute for the double-stranded RNA binding domains of the kinase PKR. EMBO J 20:3728–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Nanduri S (2000) A dynamically tuned double-stranded RNA binding mechanism for the activation of antiviral kinase PKR. EMBO J 19:5567–5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    DuRose JB, Scheuner D, Kaufman RJ et al (2009) Phosphorylation of eukaryotic translation initiation factor 2 ~ coordinates rRNA transcription and translation inhibition during endoplasmic reticulum stress. Mol Cell Biol 29:4295–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kustermann S, Boess F, Buness A et al (2013) A label-free, impedance-based real time assay to identify drug-induced toxicities and differentiate cytostatic from cytotoxic effects. Toxicol Vitr 27:1589–1595

    Article  CAS  Google Scholar 

  17. 17.

    Sandin M, Teleman J, Malmström J, Levander F (2014) Data processing methods and quality control strategies for label-free LC/MS protein quantification. Biochim Biophys Acta-Protein Proteom 1844:29–41

    Article  CAS  Google Scholar 

  18. 18.

    Dar AC, Dever TE, Sicheri F (2005) Higher-order substrate recognition of eIF2 alpha by the RNA-dependent protein kinase PKR. Cell 122:887–900

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Samuni A, Aronovitch J, Godinger D et al (1983) On the cytotoxicity of vitamin C and metal ions. A site- specific fenton mechanism. Eur J Biochem 137:119–124

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Sakagami H, Satoh K, Hakeda Y et al (2000) Apoptosis-inducing activity of vitamin C and vitamin K. Cell Mol Biol 46:129–143

    CAS  PubMed  Google Scholar 

  22. 22.

    Clément MV, Ramalingam J, Long LH et al (2001) The in vitro cytotoxicity of ascorbate depends on the culture medium used to perform the assay and involves hydrogen peroxide. Antioxid Redox Signal 3:157–163

    Article  PubMed  Google Scholar 

  23. 23.

    Chen Q, Espey MG, Sun AY (2008) Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci 105:11105–11109

    Article  PubMed  Google Scholar 

  24. 24.

    Michels AJ, Frei B (2013) Myths, artifacts, and fatal flaws: identifying limitations and opportunities in vitamin C research. Nutrients 5:5161–5192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Golubitskii GB, Budko EV, Basova EM et al (2007) Stability of ascorbic acid in aqueous and aqueous–organic solutions for quantitative determination. J Anal Chem 62:742–747

    Article  CAS  Google Scholar 

  26. 26.

    Gonzalez MJ, Miranda-Massari JR (2014) New insights on vitamin C and cancer, springerbriefs in cancer research. Springer, New York, pp 17–22

    Google Scholar 

  27. 27.

    Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (∆ψm) in apoptosis; an update. Apoptosis 8:115–128

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Nanduri S, Carpick BW, Yang Y et al (1998) Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J 17:5458–5465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Dey M, Mann BR, Anshu A, Mannan MA (2013) Activation of protein kinase PKR requires dimerization-inducedcis-phosphorylation within the activation loop. J Biol Chem 289:5747–5757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Faitova J, Krekac D, Hrstka R, Vojtesek B (2006) Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett 11:488–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by the Agency of the Slovak Ministry of Education for the Structural Funds of the EU, under project ITMS: 26220220143.

Author information



Corresponding author

Correspondence to Peter Bober.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants and/or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 42 KB)

Supplementary material 2 (XLSX 184 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bober, P., Tomková, Z., Alexovič, M. et al. The unfolded protein response controls endoplasmic reticulum stress-induced apoptosis of MCF-7 cells via a high dose of vitamin C treatment. Mol Biol Rep 46, 1275–1284 (2019).

Download citation


  • MCF-7 cells
  • Vitamin C
  • Unfolded protein response
  • Endoplasmic reticulum stress
  • PKR protein