Methyl jasmonate a stress phytohormone attenuates LPS induced in vivo and in vitro arthritis


The objective of present study was to screen the effect of methyl jasmonate (MJ) in lipopolysaccharide (LPS) induced in vivo and in vitro arthritis. Arthritis was induced in wistar rats by intraplantar administration of LPS (1 mg/Kg) and effect of MJ was screened in two doses (20, 40 mg/Kg, IP), indomethacin (30 mg/Kg p.o) was used as standard. The anti-nociceptive effect was evaluated through behavioral assessment viz. cold allodynia, Paw thermal hyperalgesia and Tail cold hyperalgesia on 1st, 7th, 14th, 21st and 28th day. The Myeloperoxidase (MPO), Cathepsin D (CAT-D), articular elastase (ELA), and nitrite levels were estimated in articular cartilage tissues on the 28th day. Rat paw was subjected to histopathology after radiological examination on 28th day. In vitro effect of MJ was evaluated for three concentrations (5, 10, 20 µg/ml) in LPS (1 µg/ml) stimulated CHNO001 cells. Estimation of pro-inflammatory mediators was carried using ELISA. Significant reduction in pro-inflammatory mediators was observed in MJ treated chondrocyte cells. % proteinase inhibition was assessed for 10, 50, 100, 250, 500 µg/mL and IC50 was found 266.15. MJ significantly reducesnociceptive response against hot and cold allodynia. Significant reduction in MPO, ELA, and nitrite levels was observed. The CAT-D levels significantly restored. Minimum focal mild infiltration of lymphocytes was observed at synovial area in standard and MJ treated rats. These current studies conclude that MJ has protective role in arthritis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Heinegard D (2009) Proteoglycans and more from molecules to biology. Int J Exp Pathol 90(6):575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Adams MA, Dolan P, McNally DS (2009) The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Bio 28(7):384–389

    Article  CAS  Google Scholar 

  3. 3.

    Mollon B, Kandel R, Chahal J, Theodoropoulos J (2013) Clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartil 21(12):1824–1833

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Rujirek C, Siriwan O, Siriwan T, Prachya K, Ampai P, Vichai R (2012) Chondroprotective potential of bioactive compounds of Zingiber cassumunar Roxb. against cytokine-induced cartilage degradation in explant culture. J Med Plant Res 6(39):5204–5213

    Article  CAS  Google Scholar 

  5. 5.

    Henrotin YE, Bruckner P, Pujol JPL (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil 11(10):747–755

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Hiran TS, Moulton PJ, Hancock JT (1999) Detection of superoxide and NADPH oxidase in porcine articular chondrocytes. Free Radic Biol Med 23(5):736–743

    Article  Google Scholar 

  7. 7.

    Hassan Heidar EL, Fareed FA, Waleed NH, Refaat AE, Mohamed AH (2014) The impact of antioxidants on inflammation and oxidative stress markers in osteoarthritis rat model: scanning electron microscope insights. Am J Pharmacol Toxicol 9(2):157–167

    Article  CAS  Google Scholar 

  8. 8.

    Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92(10):4114–4119

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Abimbola SO, Solomon U (2011) Anti-nociceptive effects of methyl jasmonate in experimental animals. J Nat Med 65(3):466–470

    Google Scholar 

  10. 10.

    Oritoke MA, Solomon U, Olajide S, Annafi F, Adewole A, Osarume O (2015) Effects of methyl jasmonate on acute stress responses in mice subjected to forced swim and anoxic tests. Sci Pharm 83(4):635–644

    Article  CAS  Google Scholar 

  11. 11.

    Sadiq U, Mishrab NK, Kaushal P, Mir S, Nehaa MA, Sayeed A (2012) Protective effect of rutin in attenuation of collagen-induced arthritis in wistar rat by inhibiting inflammation and oxidative stress. Ind J Rheumatol 7(4):191–198

    Article  Google Scholar 

  12. 12.

    Pabreja K, Dua K, Sharma S, Padi SS, Kulkarni SK (2011) Minocycline attenuates the development of diabetic neuropathic pain: possible anti-inflammatory and anti-oxidant mechanisms. Eur J Pharmacol 661(1–3):15–21

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Harquin SF, David ET, Zogo E, Bodo JC, Azanfack NC, Lissia TH, Eyong KO (2015) Anti-inflammatory and anti-arthritic activity of a methanol extract from Vitellaria paradoxa stem bark. Pharmacogn Res 7(4):367–377

    Article  Google Scholar 

  14. 14.

    Bhardwaj HC, Muthuraman A, Hari KSL, Navis S (2016) Antioxidative and anti-inflammatory potentials of ambroxol in ameliorating vincristine induced peripheral neuropathic pain in rats. J Neuroinfect Dis 7(1):1–7

    Google Scholar 

  15. 15.

    Mamatha K, Rodda HC, Ciddi V, Bookya K (2013) Anti-arthritic activity of root bark of Oroxylumindicum (L.) vent against adjuvant-induced arthritis. Pharmacogn Res 5(2):121–128

    Article  CAS  Google Scholar 

  16. 16.

    Umar S, Kumar A, Sajad M, Zargan J, Ansari M, Ahmad S (2013) Hesperidin inhibits collagen-induced arthritis possibly through suppression of free radical load and reduction in neutrophil activation and infiltration. Rheumatol Int 33(3):657–663

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Anthony U, Veronila K, Taryn Y, Alfred M (2015) Prevalence of arthritis in Africa: a SYSTEMATIC review and Meta-analysis. PLoS ONE 10(8):e0133858

    Article  CAS  Google Scholar 

  18. 18.

    Lukas G, Brindle SD, Greengard P (1971) The route of absorption of intraperitoneally administered compounds. J Pharmacol Exp Ther 178:562–566

    CAS  PubMed  Google Scholar 

  19. 19.

    Turner PV, Brabb T, Cynthia P (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim 50(5):600–613

    CAS  Google Scholar 

  20. 20.

    Dos SG, Kutuzov MA, Ridge KM (2012) The inflammasome in lung diseases. Am J Physiol Lung Cell Mol Physiol 303(8):627–633

    Article  CAS  Google Scholar 

  21. 21.

    Christopher BL, Margaret MS (2008) Animal models of osteoarthritis. Curr Rheumatol Rev 4(3):175–182

    Article  Google Scholar 

  22. 22.

    Troyer H (1982) Experimental models of osteoarthritis: a review. Semin Arthritis Rheum 11(3):362–374

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Collins KH, Reimer RA, Seerattan RA, Leonard TR, Herzog W (2015) Using diet-induced obesity to understand a metabolic subtype of osteoarthritis in rats. Osteoarthr Cartil 23(6):957–965

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Stoop R, Peter MV, Buma P, Hollander AP, Billinghurst RC, Poole AR (1999) Type II collagen degradation in spontaneous osteoarthritis in C57Bl/6 and BALB/c mice. Arthritis Rheum 42(11):2381–2389

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Hai W, Zhi-Ran C (2014) Anti-inflammatory effects of (−) epicatechin in lipopolysaccharide stimulated raw 264.7 macrophages. Trop J Pharm Res 13(9):1415–1419

    Article  CAS  Google Scholar 

  26. 26.

    Tomoyuki M, Gregory MC, Burhan G, Laura BM, Guangheng L, Arvydas U (2009) Cartilage repair in a rat model of osteoarthritis through intra-articular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble flt-1. Arthri Rheum 60(5):1390–1405

    Article  Google Scholar 

  27. 27.

    Byeong SC (2018) Pretreatment of low-dose and super-low-dose LPS on the production of in vitro LPS-induced inflammatory mediators. Toxicol Res 34(1):65–73

    Article  Google Scholar 

  28. 28.

    Dong L, Li H, Wang S, Li Y (2009) Different doses of lipopolysaccharides regulate the lung inflammation of asthmatic mice via TLR4 pathway in alveolar macrophages. J Asthma 46(3):229–233

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Yeamin H, Richard FK, David E (2013) Impact of lipopolysaccharide-induced inflammation on the disposition of the aminocephalosporin C. Antimicrob Agents Chemother 57(12):6171–6178

    Article  CAS  Google Scholar 

  30. 30.

    Sehic E, Li S, Ungar AL, Blatteis CM (1998) Complement reduction impairs the febrile response of guinea pigs to endotoxin. Regul Integr Physiol 274(6):1594–1603

    Article  Google Scholar 

  31. 31.

    Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214(2):149–160

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Marcela PC, Gustavo CC (2016) Human interleukin 2 (IL-2) promotion of immune regulation and clinical outcomes: a review. J Cytokine Biol 1(2):1–4

    Google Scholar 

  33. 33.

    Sinnathambi A, Papiya MM, Lohidasan S, Purnima A (2011) Anti-arthritic and antioxidant activity of leaves of Alstoniascholaris Linn.R.Br. Eur J Integr Med 3(2):83–90

    Article  Google Scholar 

  34. 34.

    Artmann G, Fehr K, Boni A (1977) Cathepsin D agglutinators in rheumatoid arthritis I increased CDA titers in serum and synovial fluid of patients with sero positive RA. Arthritis Rheumatol 20(5):1105–1113

    Article  CAS  Google Scholar 

  35. 35.

    Louisa BA, Emmanuelle M, Duha F, Ashok K, Eli R, Yael B (2015) Detecting cathepsin activity in human osteoarthritis via activity-based probes. Arthritis Res Ther 17(69):1–13

    Google Scholar 

  36. 36.

    Momohara S, Kashiwazaki S, Inoue K, Saito S, Nakagawa T (1997) Elastase from polymorphonuclear leukocyte in articular cartilage and synovial fluids of patients with rheumatoid arthritis. Clin Rheumatatol 16(2):133–140

    Article  CAS  Google Scholar 

  37. 37.

    Vuolteenaho K, Moilanen T, Knowles RG, Moilanen E (2007) The role of nitric oxide in osteoarthritis. Scandi J Rheumatol 36(4):247–258

    Article  CAS  Google Scholar 

  38. 38.

    Yvonne R, Caroline O, Steffen G (2007) Proteinases in the joint: clinical relevance of proteinases in joint destruction. Arthr Res Ther 9(211):1–10

    Google Scholar 

  39. 39.

    Kaneko M, Tomita T, Nakase T, Ohsawa Y, Seki H, Takeuchi E (2001) Expression of proteinases and inflammatory cytokines in subchondral bone regions in the destructive joint of rheumatoid arthritis. Rheumatology 40(3):247–255

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Fionula MB, Iain BM (2008) Evidence that cytokines play a role in rheumatoid arthritis. J Clin Investi 118(11):3537–3545

    Article  CAS  Google Scholar 

  41. 41.

    Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler, Thromb Vasc Biol 31(5):986–1000

    Article  CAS  Google Scholar 

  42. 42.

    Murphy G, Lee MH (2005) What are the roles of metalloproteinases in cartilage and bone damage? Ann Rheum Dis 64(4):44–47

    Google Scholar 

  43. 43.

    Gunjegaonkar SM, Shanmugarajan TS (2018) Potential of plant stress hormone methyl jasmonate against lipopolysaccharide attenuated oxidative stress and arthritis in experimental animals. Int J Green Pharm 12(3):561–569

    Google Scholar 

Download references


We are thankful to Dean, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies, for providing necessary facilities to carry out the research. The research was not funded (Financial and material support) by any government, the non-government agency the expenses are barred by authors only.

Author information



Corresponding author

Correspondence to S. M. Gunjegaonkar.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest relevant to this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gunjegaonkar, S.M., Shanmugarajan, T.S. Methyl jasmonate a stress phytohormone attenuates LPS induced in vivo and in vitro arthritis. Mol Biol Rep 46, 647–656 (2019).

Download citation


  • Methyl jasmonate
  • Lipopolysaccharides
  • Anti-inflammatory
  • Antinociceptive
  • Chondrocyte