Skip to main content
Log in

Evaluation of growth and gene expression of Mycoplasma hyopneumoniae and Mycoplasma hyorhinis in defined medium

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mycoplasmas belong to the Mollicutes class and possess low GC content and lack a cell wall, and also simplified metabolic pathways. Due to its reduced metabolic ability mycoplasmas are fastidious organisms growing with difficult under laboratory conditions. Its complex nutritional requirements render mycoplasmas to depend on external supplies of biosynthetic precursors. Aiming to develop and test defined media that could be used as a tool for Mycoplasma research, Mycoplasma hyopneumoniae and Mycoplasma hyorhinis were cultivated in a complex medium supplemented with serum (Friis broth) and in four different defined media (YUS, YUSm, CMRL and CMRL+, that was developed in the present study). The cell concentration of both Mycoplasma species was assessed, by flow cytometry. Cellular viability was also analyzed in all defined media, indicating the presence of viable mycoplasma cells. All the defined media tested were able to maintain cell concentrations and viability and, amongst them, CMRL+ was the most suitable. For both Mycoplasma species, only the CMRL+ media showed similar cell density when compared to the complex medium. The transcriptional response of M. hyopneumoniae in CMRL+ broth was assessed by RT-qPCR, and the transcriptional profile of 18 genes in three cultures conditions (standard, heat shock and oxidative stress) was analyzed demonstrating gene expression regulation in response to the medium composition and to the culture conditions tested. The medium developed enables the definition of mycoplasmal nutritional requirements and metabolic pathways as well as genetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Citti C, Blanchard A (2013) Mycoplasmas and their host: emerging and re-emerging minimal pathogens. Trends Microbiol 21(4):196–203

    Article  CAS  Google Scholar 

  2. Sirand-Pugnet P, Citti C, Barre A, Blanchard A (2007) Evolution of Mollicutes: down a bumpy road with twists and turns. Res Microbiol 158(10):754–766

    Article  CAS  Google Scholar 

  3. Thacker EL (2004) Diagnosis of Mycoplasma hyopneumoniae. J Swine Health Prod 12(5):252–254

    Google Scholar 

  4. Kobisch M, Friis NF (1996) Swine mycoplasmoses. Rev Sci Tech 15(4):6

    Article  Google Scholar 

  5. Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW (2012) Diseases of Swine. John Wiley & Sons, Inc., Oxford

    Google Scholar 

  6. Vasconcelos ATR, Ferreira HB, Bizarro CV, Bonatto SL, Carvalho MO, Pinto PM, Almeida DF, Almeida LGP, Almeida R, Alves L et al.(2005) Swine and poultry pathogens: the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae. J Bacteriol 187(16):5568–5577

    Article  CAS  Google Scholar 

  7. Siqueira FM, Gerber AL, Guedes RLM, Almeida LG, Schrank IS, Vasconcelos ATR, Zaha A (2014) Unravelling the transcriptome profile of the swine respiratory tract mycoplasmas. PLoS ONE 9(10):12

    Article  Google Scholar 

  8. Ferrarini MG, Siqueira FM, Mucha SG, Palama TL, Jobard E, Elena-Herrmann B, Vasconcelos ATR, Tardy F, Schrank IS, Zaha A et al.(2016) Insights on the virulence of swine respiratory tract Mycoplasmas through genome-scale metabolic modeling. BMC Genom 17:20

    Article  Google Scholar 

  9. Baseman JB, Tully JG (1997) Mycoplasmas: sophisticated, reemerging, and burdened by their notoriety. Emerg Infect Dis 3(1):21–32

    Article  CAS  Google Scholar 

  10. Greenbergofrath N, Terespolosky Y, Kahane I, Bar R (1993) Cyclodextrins as carriers of cholesterol and fatty-acids in cultivation of mycoplasmas. Appl Environ Microbiol 59(2):547–551

    CAS  Google Scholar 

  11. Minion FC, Lefkowitz EJ, Madsen ML, Cleary BJ, Swartzell SM, Mahairas GG (2004) The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis. J Bacteriol 186(21):7123–7133

    Article  CAS  Google Scholar 

  12. Stemke GW, Robertson JA (1990) The growth-response of Mycoplasma hyopneumoniae and Mycoplasma flocculare based upon ATP-dependent luminometry. Vet Microbiol 24(2):135–142

    Article  CAS  Google Scholar 

  13. Razin S, Tully JG (1995) Molecular and diagnostic procedures in mycoplasmology. Academic Press, INC, California

    Google Scholar 

  14. Gardner SW, Minion FC (2010) Detection and quantification of intergenic transcription in Mycoplasma hyopneumoniae. Microbiology 156:2305–2315

    Article  CAS  Google Scholar 

  15. van Belkum A, Scherer S, van Alphen L, Verbrugh H (1998) Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62(2):275–293

    PubMed  PubMed Central  Google Scholar 

  16. Cattani AM, Siqueira FM, Guedes RLM, Schrank IS (2016) Repetitive elements in Mycoplasma hyopneumoniae transcriptional regulation. PLoS ONE 11(12):e0168626

    Article  Google Scholar 

  17. Madsen ML, Nettleton D, Thacker EL, Edwards R, Minion FC (2006) Transcriptional profiling of Mycoplasma hyopneumoniae during heat shock using microarrays. Infect Immun 74(1):160–166

    Article  CAS  Google Scholar 

  18. Madsen ML, Nettleton D, Thacker EL, Minion FC (2006) Transcriptional profiling of Mycoplasma hyopneumoniae during iron depletion using microarrays. Microbiology 152:937–944

    Article  CAS  Google Scholar 

  19. Oneal MJ, Schafer ER, Madsen ML, Minion FC (2008) Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to norepinephrine. Microbiology 154:2581–2588

    Article  CAS  Google Scholar 

  20. Schafer ER, Oneal MJ, Madsen ML, Minion FC (2007) Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to hydrogen peroxide. Microbiology 153:3785–3790

    Article  CAS  Google Scholar 

  21. Siqueira FM, de Morais GL, Higashi S, Beier LS, Breyer GM, de Sá Godinho CP, Sagot M-F, Schrank IS, Zaha A, de Vasconcelos ATR (2016) Mycoplasma non-coding RNA: identification of small RNAs and targets. BMC Genom 17(8):743

    Article  Google Scholar 

  22. Friis NF (1975) Some recommendations concerning primary isolation of Mycoplasma suipneumoniae and Mycoplasma flocculare—survey. Nordisk Veterinaer Med 27(6):337–339

    CAS  Google Scholar 

  23. Yus E, Maier T, Michalodimitrakis K, van Noort V, Yamada T, Chen WH, Wodke JAH, Guell M, Martinez S, Bourgeois R et al.(2009) Impact of genome reduction on bacterial metabolism and its regulation. Science 326(5957):1263–1268

    Article  CAS  Google Scholar 

  24. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37(6):12

    Article  Google Scholar 

  25. Madsen ML, Puttamreddy S, Thacker EL, Carruthers MD, Minion FC (2008) Transcriptome changes in Mycoplasma hyopneumoniae during infection. Infect Immun 76(2):658–663

    Article  CAS  Google Scholar 

  26. Cook BS, Beddow JG, Manso-Silvan L, Maglennon GA, Rycroft AN (2016) Selective medium for culture of Mycoplasma hyopneumoniae. Vet Microbiol 195:158–164

    Article  CAS  Google Scholar 

  27. Razin S (1969) Structure and function in Mycoplasma. Annu Rev Microbiol 23:317–356

    Article  CAS  Google Scholar 

  28. Razin S, Tully JG (1970) Cholesterol requirement of mycoplasmas. J Bacteriol 102(2):306–310

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodwell AW, Abbot A (1961) Function of glycerol, cholesterol and long-chain fatty acids in nutrition of Mycoplasma mycoides. J Gen Microbiol 25(2):201–214

    Article  CAS  Google Scholar 

  30. Miles RJ, Wadher BJ, Henderson CL, Mohan K (1998) Increased growth yields of Mycoplasma spp. in the presence of pyruvate. Lett Appl Microbiol 7(6):149–151

    Article  Google Scholar 

  31. Kamminga T, Slagman SJ, Bijlsma JJE, Martins dos Santos VAP, Suarez-Diez M, Schaap PJ (2017) Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate. Biotechnol Bioeng 114(10):2339–2347

    Article  CAS  Google Scholar 

  32. Constantopoulos G, McGarrity GJ (1987) Activities of oxidative enzymes in mycoplasmas. J Bacteriol 169(5):2012–2016

    Article  CAS  Google Scholar 

  33. Lin YC, Miles RJ, Nicholas RAJ, Kelly DP, Wood AP (2008) Isolation and immunological detection of Mycoplasma ovipneumoniae in sheep with atypical pneumonia, and lack of a role for Mycoplasma arginini. Res Vet Sci 84(3):367–373

    Article  CAS  Google Scholar 

  34. Bertin C, Pau-Roblot C, Courtois J, Manso-Silvan L, Thiaucourt F, Tardy F, Le Grand D, Poumarat F, Gaurivaud P (2013) Characterization of free exopolysaccharides secreted by Mycoplasma mycoides Subsp mycoides. PLoS ONE 8(7):9

    Google Scholar 

  35. Friis NF (1971) Selective medium for Mycoplasma suipneumoniae. Acta Vet Scand 12(3):454–456

    CAS  PubMed  Google Scholar 

  36. Razin S (1994) DNA probes and PCR in diagnosis of mycoplasma-infections. Mol Cell Probes 8(6):497–511

    Article  CAS  Google Scholar 

  37. Jaffe JD, Stange-Thomann N, Smith C, DeCaprio D, Fisher S, Butler J, Calvo S, Elkins T, Fitzgerald MG, Hafez N et al.(2004) The complete genome and proteome of Mycoplasma mobile. Genome Res 14(8):1447–1461

    Article  CAS  Google Scholar 

  38. Gardella RS, Delgiudice RA (1995) Growth of Mycoplasma hyorhinis cultivar-alpha on semisynthetic medium. Appl Environ Microbiol 61(5):1976–1979

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Calus D, Maes D, Vranckx K, Villareal I, Pasmans F, Haesebrouck F (2010) Validation of ATP luminometry for rapid and accurate titration of Mycoplasma hyopneumoniae in Friis medium and a comparison with the color changing units assay. J Microbiol Methods 83(3):335–340

    Article  CAS  Google Scholar 

  40. Buysschaert B, Byloos B, Leys N, Van Houdt R, Boon N (2016) Reevaluating multicolor flow cytometry to assess microbial viability. Appl Microbiol Biotechnol 100(21):9037–9051

    Article  CAS  Google Scholar 

  41. Gusarov I, Nudler E (2005) NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci USA 102(39):13855–13860

    Article  CAS  Google Scholar 

  42. Dascher CC, Poddar SK, Maniloff J (1990) Heat-shock response in mycoplasmas, genome-limited organisms. J Bacteriol 172(4):1823–1827

    Article  CAS  Google Scholar 

  43. Plesofsky N, Higgins L, Markowski T, Brambl R (2016) Glucose starvation alters heat shock response, leading to death of wild type cells and survival of MAP kinase signaling mutant. PLoS ONE 11(11):31

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES. CAPES—Biologia Computacional (Process Number: 23038.010043/2013-02) and Ministério da Ciência, Tecnologia e Inovação/Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCTI/CNPq) Universal (Process Number: 445228/2014-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Silveira Schrank.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

No human nor animal subjects were involved in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1—Information of the composition of the defined media tested (DOC 262 KB)

11033_2018_4413_MOESM2_ESM.pdf

Supplementary material 2—Schematic representation of sample cultivation and processing. a: workflow of procedures to assess the growth rate in all the defined media to compare with complex medium. b: assessment of growth at different times of cultivation of M. hyopneumoniae and M. hyorhinis in Friis and CMRL+ broth. MHP: M. hyopneumoniae; MHR: M. hyorhinis (PDF 616 KB)

11033_2018_4413_MOESM3_ESM.pdf

Supplementary material 3—Schematic representation of the viability test protocol. Indicating the species and media utilized, pH alteration was seen through a color shift of the media. MHP: M. hyopneumoniae; MHR: M. hyorhinis (PDF 149 KB)

11033_2018_4413_MOESM4_ESM.pdf

Supplementary material 4—Schematic representation of procedures to assess gene regulation in CMRL+ and Friis broth. MHP: M. hyopneumoniae; MHR: M. hyorhinis (PDF 236 KB)

11033_2018_4413_MOESM5_ESM.doc

Supplementary material 5—Target genes and the oligonucleotide sequences and features used to assess transcriptional regulation (DOC 253 KB)

11033_2018_4413_MOESM6_ESM.pdf

Supplementary material 6—Viability test by color shift of the media. a: expected color change of media. In an earlier inoculated medium, the pH is alkaline (around 8.2), and the medium shows a red color, implying that there is no mycoplasmal growth (I). Once mycoplasma start to duplicate, growth metabolites cause medium acidification (II), decreasing the pH to about 6.6 after 48 h of cultivation (III). This pH alteration, seen as a color shift from red to yellow, denotes bacterial growth. b: viability test result. By the end of 48 h of cultivation, the alteration in color was only visualized in CMRL and CMRL+ media. After re-inoculation in Friis broth, neither culture presented the expected color shift (PDF 5095 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beier, L.S., Siqueira, F.M. & Schrank, I.S. Evaluation of growth and gene expression of Mycoplasma hyopneumoniae and Mycoplasma hyorhinis in defined medium. Mol Biol Rep 45, 2469–2479 (2018). https://doi.org/10.1007/s11033-018-4413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4413-3

Keywords

Profiles

  1. Franciele Maboni Siqueira