Skip to main content

Advertisement

Log in

Predicting membrane proteins and their types by extracting various sequence features into Chou’s general PseAAC

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

For many biological functions membrane proteins (MPs) are considered crucial. Due to this nature of MPs, many pharmaceutical agents have reflected them as attractive targets. It bears indispensable importance that MPs are predicted with accurate measures using effective and efficient computational models (CMs). Annotation of MPs using in vitro analytical techniques is time-consuming and expensive; and in some cases, it can prove to be intractable. Due to this scenario, automated prediction and annotation of MPs through CM based techniques have appeared to be useful. Based on the use of computational intelligence and statistical moments based feature set, an MP prediction framework is proposed. Furthermore, the previously used dataset has been enhanced by incorporating new MPs from the latest release of UniProtKB. Rigorous experimentation proves that the use of statistical moments with a multilayer neural network, trained using back-propagation based prediction techniques allows more thorough results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Butt AH, Rasool N, Khan YD (2017) A treatise to computational approaches towards prediction of membrane protein and its subtypes. J Membr Biol 250:55–76

    CAS  PubMed  Google Scholar 

  2. Butt AH, Khan SA, Jamil H, Rasool N, Khan YD (2016) A prediction model for membrane proteins using moments based features. Biomed Res Int. https://doi.org/10.1155/2016/8370132.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chou KC, Shen HB (2007) MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Commun 360(2):339–345

    CAS  PubMed  Google Scholar 

  4. Chou KC, Elrod DW (1999) Prediction of membrane protein types and subcellular locations. Proteins Struct Funct Bioinform 34(1):137–153

    CAS  Google Scholar 

  5. Chou KC (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins Struct Funct Bioinform 43(3):246–255

    CAS  Google Scholar 

  6. Cai YD, Zhou GP, Chou KC (2003) Support vector machines for predicting membrane protein types by using functional domain composition. Biophys J 84(5):3257–3263

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu H, Wang M, Chou KC (2005) Low-frequency Fourier spectrum for predicting membrane protein types. Biochem Biophys Res Commun 336(3):737–739

    CAS  PubMed  Google Scholar 

  8. Liu H, Yang J, Wang M, Xue L, Chou KC (2005) Using Fourier spectrum analysis and pseudo amino acid composition for prediction of membrane protein types. Protein J 24(6):385–389

    CAS  PubMed  Google Scholar 

  9. Shen H, Chou KC (2005) Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo-amino acid composition to predict membrane protein types. Biochem Biophys Res Commun 334(1):288–292

    CAS  PubMed  Google Scholar 

  10. Hayat M, Khan A, Yeasin M (2012) Prediction of membrane proteins using split amino acid and ensemble classification. Amino Acids 42(6):2447–2460

    CAS  PubMed  Google Scholar 

  11. Huang G, Zhang Y, Chen L, Zhang N, Huang T, Cai YD (2014) Prediction of multi-type membrane proteins in human by an integrated approach. PloS ONE 9(3):e93553

    PubMed  PubMed Central  Google Scholar 

  12. Zou HL, Xiao X (2016) Predicting the functional types of singleplex and multiplex eukaryotic membrane proteins via different models of Chou’s pseudo amino acid compositions. J Membr Biol 249(1–2):23–29

    CAS  PubMed  Google Scholar 

  13. Feng PM, Chen W, Lin H (2013) iHSP-PseRAAAC: identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal Biochem 442:118–125

    CAS  PubMed  Google Scholar 

  14. Chen W, Feng PM, Lin H (2014) iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. Biomed Res Int (BMRI) 2014:623149

    Google Scholar 

  15. Chen W, Feng P, Ding H, Lin H (2015) iRNA-methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition. Anal Biochem 490:26–33

    CAS  PubMed  Google Scholar 

  16. Jia J, Liu Z, Xiao X, Liu B (2016) pSuc-Lys: predict LYSINE succinylation sites in proteins with PseAAC and ensemble random forest approach. J Theor Biol 394:223–230

    CAS  PubMed  Google Scholar 

  17. Chen W, Ding H, Feng P, Lin H (2016) iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 7:16895–16909

    PubMed  PubMed Central  Google Scholar 

  18. Liu B, Yang F (2017) 2L-piRNA: a two-layer ensemble classifier for identifying piwi-interacting RNAs and their function. Mol Ther Nucleic Acids 7:267–277

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Feng P, Ding H, Yang H, Chen W, Lin H (2017) iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol Ther Nucleic Acids 7:155–163

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu B, Wang S, Long R (2017) iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics 33:35–41

    CAS  PubMed  Google Scholar 

  21. Cheng X, Xiao X (2017) pLoc-mPlant: predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC. Mol BioSyst 13:1722–1727

    CAS  PubMed  Google Scholar 

  22. Cheng X, Xiao X (2018) pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics 110:50–58

    CAS  PubMed  Google Scholar 

  23. Feng P, Yang H, Ding H, Lin H, Chen W (2018) iDNA6mA-PseKNC: identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics. https://doi.org/10.1016/j.ygeno.2018.01.005

    Article  PubMed  Google Scholar 

  24. Liu B, Li K, Huang DS (2018) iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty458

    Article  PubMed  PubMed Central  Google Scholar 

  25. Su ZD, Huang Y, Zhang ZY, Zhao YW, Wang D, Chen W, Lin H (2018) iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty508

    Article  PubMed  Google Scholar 

  26. Liu B, Yang F, Huang DS (2018) iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics 34:33–40

    CAS  PubMed  Google Scholar 

  27. Chen W, Feng P, Yang H, Ding H, Lin H (2018) iRNA-3typeA: identifying 3-types of modification at RNA’s adenosine sites. Mol Ther Nucleic Acid 11:468–474

    CAS  Google Scholar 

  28. Liu B, Weng F, Huang DS (2018) iRO-3wPseKNC: identify DNA replication origins by three-window-based PseKNC. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty312/4978052

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang H, Qiu WR, Liu G, Guo FB, Chen W, Lin H (2018) iRSpot-Pse6NC: identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int J Biol Sci 14:883–891

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiu WR, Sun BQ, Xiao X, Xu ZC, Jia JH (2018) iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics 110:239–246

    CAS  PubMed  Google Scholar 

  31. Chou KC (2011) Some remarks on protein attribute prediction and pseudo amino acid composition (50th anniversary year review). J Theor Biol 273:236–247

    CAS  PubMed  Google Scholar 

  32. Lin H (2008) The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition. J Theor Biol 252:350–356

    CAS  PubMed  Google Scholar 

  33. Hayat M, Khan A (2012) Discriminating outer membrane proteins with fuzzy K-nearest neighbor algorithms based on the general form of Chou’s PseAAC. Protein Pept Lett 19:411–421

    CAS  PubMed  Google Scholar 

  34. Huang C, Yuan JQ (2013) A multilabel model based on Chou’s pseudo amino acid composition for identifying membrane proteins with both single and multiple functional types. J Membr Biol 246:327–334

    CAS  PubMed  Google Scholar 

  35. Han GS, Yu ZG, Anh V (2014) A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou’s PseAAC. J Theor Biol 344:31–39

    CAS  PubMed  Google Scholar 

  36. Ali F, Hayat M (2015) Classification of membrane protein types using voting feature interval in combination with Chou’s pseudo amino acid composition. J Theor Biol 384:78–83

    CAS  PubMed  Google Scholar 

  37. Arif M, Hayat M, Jan Z (2018) iMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition. J Theor Biol 442:11–21

    CAS  PubMed  Google Scholar 

  38. Sankari ES, Manimegalai DD (2018) Predicting membrane protein types by incorporating a novel feature set into Chou’s general PseAAC. J Theor Biol 455:319–328

    Article  CAS  Google Scholar 

  39. Liu B, Liu F, Wang X, Chen J, Fang L (2015) Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res 43:W65–W71

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu B, Wu H (2017) Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nat Sci 9:67–91

    Google Scholar 

  41. Chou KC (2015) Impacts of bioinformatics to medicinal chemistry. Med Chem 11:218–234

    CAS  PubMed  Google Scholar 

  42. Chou KC (2001) Prediction of protein cellular attributes using pseudo amino acid composition. Proteins Struct Funct Genet 43:246–255

    CAS  PubMed  Google Scholar 

  43. Chou KC (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19

    CAS  PubMed  Google Scholar 

  44. Mei J, Zhao J (2018) Prediction of HIV-1 and HIV-2 proteins by using Chou’s pseudo amino acid compositions and different classifiers. Sci Rep 8:2359

    PubMed  PubMed Central  Google Scholar 

  45. Mei J, Zhao J (2018) Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou’s general pseudo amino acid composition and motif features. J Theor Biol 427:147–153

    Google Scholar 

  46. Krishnan MS (2018) Using Chou’s general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains. J Theor Biol 445:62–74

    Google Scholar 

  47. Zhang L, Kong L, iRSpot-ADPM (2018) Identify recombination spots by incorporating the associated dinucleotide product model into Chou’s pseudo components. J Theor Biol 441:1–8

    CAS  PubMed  Google Scholar 

  48. Zhang S, Duan X (2018) Prediction of protein subcellular localization with oversampling approach and Chou’s general PseAAC. J Theor Biol 437:239–250

    CAS  PubMed  Google Scholar 

  49. Chou KC (2017) An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr Top Med Chem 17:2337–2358

    CAS  PubMed  Google Scholar 

  50. Chou KC (2009) Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr Proteomics 6:262–274

    CAS  Google Scholar 

  51. Chen W, Lin H (2015) Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol BioSyst 11:2620–2634

    CAS  PubMed  Google Scholar 

  52. Chen W, Tang H, Ye J, Lin H (2016) iRNA-PseU: identifying RNA pseudouridine sites. Mol Ther Nucleic Acids 5:e332

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu B, Fang L, Long R, Lan X (2016) iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics 32:362–369

    CAS  PubMed  Google Scholar 

  54. Liu B, Long R (2016) iDHS-EL: identifying DNase I hypersensi-tivesites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics 32:2411–2418

    PubMed  Google Scholar 

  55. Papademetriou RC (1992) Reconstructing with moments. In: Proceedings of 11th IAPR international conference on pattern recognition, 1992. Vol. III. Conference C: image, speech and signal analysis. IEEE, pp 476–480

  56. Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533

    Google Scholar 

  57. Dosset P, Rassam P, Fernandez L, Espenel C, Rubinstein E, Margeat E, Milhiet PE (2016) Automatic detection of diffusion modes within biological membranes using back-propagation neural network. BMC Bioinform 17(1):197

    Google Scholar 

  58. Bai Y, Zhang H, Hao Y (2009) The performance of the backpropagation algorithm with varying slope of the activation function. Chaos Solitons Fractals 40(1):69–77

    Google Scholar 

  59. Nakashima H, Nishikawa K, Ooi T (1986) The folding type of a protein is relevant to the amino acid composition. J Biochem 99(1):153–162

    CAS  PubMed  Google Scholar 

  60. Cedano J, Aloy P, Perez-Pons JA, Querol E (1997) Relation between amino acid composition and cellular location of proteins. J Mol Biol 266(3):594–600

    CAS  PubMed  Google Scholar 

  61. Wan S, Mak MW, Kung SY (2016) Mem-ADSVM: a two-layer multi-label predictor for identifying multi-functional types of membrane proteins. J Theor Biol 398:32–42

    CAS  PubMed  Google Scholar 

  62. Chen YK, Li KB (2013) Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou’s pseudo amino acid composition. J Theor Biol 318:1–12

    CAS  PubMed  Google Scholar 

  63. Chou KC, Cai YD (2002) Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 277(48):45765–45769

    CAS  PubMed  Google Scholar 

  64. Akmal MA, Rasool N, Khan YD (2017) Prediction of N-linked glycosylation sites using position relative features and statistical moments. PLoS ONE 12(8):e0181966

    PubMed  PubMed Central  Google Scholar 

  65. Chou KC (2001) Prediction of signal peptides using scaled window. Peptides 22:1973–1979

    CAS  PubMed  Google Scholar 

  66. Chen W, Feng PM, Lin H (2013) iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res 41:e68

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lin H, Deng EZ, Ding H, Chen W (2014) iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res 42:12961–12972

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu Y, Wen X, Wen LS, Wu LY, Deng NY (2014) iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS ONE 9:e105018

    PubMed  PubMed Central  Google Scholar 

  69. Zhang CJ, Tang H, Li WC, Lin H, Chen W (2016) iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget 7:69783–69793

    PubMed  PubMed Central  Google Scholar 

  70. Chen W, Feng P, Yang H, Ding H, Lin H (2017) iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget 8:4208–4217

    PubMed  Google Scholar 

  71. Ehsan A, Mahmood K, Khan YD, Khan SA (2018) A novel modeling in mathematical biology for classification of signal peptides. Sci Rep 8:1039

    PubMed  PubMed Central  Google Scholar 

  72. Xuao X, Cheng X, Chen G, Mao Q (2018) pLoc_bal-mGpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics. https://doi.org/10.1016/j.ygeno.2018.05.017

    Article  Google Scholar 

  73. Cheng X, Zhao SG, Lin WZ, Xiao X (2017) pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics 33:3524–3531

    CAS  PubMed  Google Scholar 

  74. Xiao X, Cheng X, Su S, Nao Q (2017) pLoc-mGpos: incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Nat Sci 9:331–349

    Google Scholar 

  75. Cheng X, Xiao X (2018) pLoc-mGneg: predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics 110:231–239

    CAS  Google Scholar 

  76. Qiu WR, Sun BQ, Xiao X, Xu ZC (2016) iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics 32:3116–3123

    CAS  PubMed  Google Scholar 

  77. Chou KC (2013) Some remarks on predicting multi-label attributes in molecular biosystems. Mol Biosyst 9:1092–1100

    CAS  PubMed  Google Scholar 

  78. Shen HB (2009) Recent advances in developing web-servers for predicting protein attributes. Nat Sci 1:63–92

    Google Scholar 

  79. Liu B, Fang L, Liu F, Wang X, Chen J (2015) Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS ONE 10:e0121501

    PubMed  PubMed Central  Google Scholar 

  80. Wang J, Yang B, Revote J, Leier A, Marquez-Lago TT, Webb G, Song J, Lithgow T (2017) POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles Bioinformatics 33:2756–2758

    CAS  PubMed  Google Scholar 

  81. Chen Z, Zhao PY, Li F, Leier A, Marquez-Lago TT, Wang Y, Webb GI, Smith AI, Daly RJ, Song J (2018) iFeature: a python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics 34:2499–2502

    PubMed  Google Scholar 

  82. Li F, Li C, Marquez-Lago TT, Leier A, Akutsu T, Purcell AW, Smith AI, Lightow T, Daly RJ, Song J (2018) Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty522

    Article  PubMed  PubMed Central  Google Scholar 

  83. Song J, Li F, Leier A, Marquez-Lago TT, Akutsu T, Haffari G, Webb GI, Pike RN (2018) PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics 34:684–687

    PubMed  Google Scholar 

  84. Song J, Li F, Takemoto K, Haffari G, Akutsu T, Webb GI (2018) PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural and network features in a machine learning framework. J Theor Biol 443:125–137

    CAS  PubMed  Google Scholar 

  85. Song J, Wang Y, Li F, Akutsu T, Rawlings ND, Webb GI (2018) iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Brief Bioinform. https://doi.org/10.1093/bib/bby028

    Article  PubMed  Google Scholar 

  86. Cheng X, Xiao X (2018) pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics 34:1448–1456

    PubMed  Google Scholar 

  87. Liu LM, Xu Y (2017) iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC. Med Chem 13:552–559

    CAS  PubMed  Google Scholar 

  88. Qiu WR, Jiang SY, Xu ZC, Xiao X (2017) iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget 8:41178–41188

    PubMed  PubMed Central  Google Scholar 

  89. Wang J, Yang B, Leier A, Marquez-Lago TT, Hayashida M, Rocker A, Yanju Z, Akutsu T, Strugnell RA, Song J, Lithgow T (2018) Bastion6: a bioinformatics approach for accurate prediction of type VI secreted effectors. Bioinformatics 34:2546–2555

    PubMed  Google Scholar 

  90. Qiu WR, Sun BQ, Xiao X, Xu D (2017) iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Mol Inform 36:1600010

    Google Scholar 

  91. Xu Y, Li C (2017) iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC. Med Chem 13:544–551

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Hassan Butt.

Ethics declarations

Conflict of interest

All authors have declared that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, A.H., Rasool, N. & Khan, Y.D. Predicting membrane proteins and their types by extracting various sequence features into Chou’s general PseAAC. Mol Biol Rep 45, 2295–2306 (2018). https://doi.org/10.1007/s11033-018-4391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4391-5

Keywords

Navigation