Skip to main content

Advertisement

Log in

Microbe-mediate transformation of echinocystic acid by whole cells of filamentous fungus Cunninghamella blakesleana CGMCC 3.910

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Structural modification of echinocystic acid (EA), a pentacyclic triterpenoid with wide spread biological activities was investigated by microbial transformation. Microbe-mediate transformation of EA was carried out by filamentous fungus Cunninghamella blakesleana CGMCC 3.910. Four metabolites 3β, 7β, 16α-trihydroxy-olean-12-en-28-oic acid (EA-2); 3β, 7β, 16β,19β-tetrahydroxy-olean-12-en-28-oic acid (EA-3); 3β, 7β, 16α, 21β-tetrahydroxy-olean-12-en-28-oic acid (EA-4); 3β, 7β, 16α-trihydroxy-olean-11, 13(18)-dien-28-oic acid (EA-5) were produced. Structures of transformed products were elucidated by 1D and 2D NMR and HR-MS data. EA-3 and EA-4 were new compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Garai S, Ghosh R, Banerjee PP, Mandal NC, Chattopadhyay A (2018) Anti-microbial and anti-cancer properties of echinocystic acid extracted from Luffa cylindrica. J Food Process Technol 9:717

    Google Scholar 

  2. Bjh B, Baer B, Arsenault C, Jazey T, Eja V, Delport J, Gooyers T, Lewis JF, Haagsman HP, Raw V (2017) The antibacterial and anti-inflammatory activity of chicken cathelicidin-2 combined with exogenous surfactant for the treatment of cystic fibrosis-associated pathogens. Sci Rep 7(1):15545

    Article  Google Scholar 

  3. Sahu NP, Mahato SB (1994) Anti-inflammatory triterpene saponins of Pithecellobium dulce: characterization of an echinocystic acid bisdesmoside. Phytochemistry 37(5):1425

    Article  CAS  Google Scholar 

  4. Joh EH, Gu W, Kim DH (2012) Echinocystic acid ameliorates lung inflammation in mice and alveolar macrophages by inhibiting the binding of LPS to TLR4 in NF-κB and MAPK pathways. Biochem Pharmacol 84(3):331–340

    Article  CAS  Google Scholar 

  5. Tong X, Lin S, Fujii M, Hou DX (2004) Echinocystic acid induces apoptosis in HL-60 cells through mitochondria-mediated death pathway. Cancer Lett 212(1):21–32

    Article  CAS  Google Scholar 

  6. Tong X, Lin S, Fujii M, Hou DX (2004) Molecular mechanisms of echinocystic acid-induced apoptosis in HepG2 cells. Biochem Biophys Res Commun 321(3):539–546

    Article  CAS  Google Scholar 

  7. Kumar D, Gaonkar RH, Ghosh R, Pal BC (2012) Bio-assay guided isolation of alpha-glucosidase inhibitory constituents from Eclipta alba. Nat Prod Commun 7(8):989

    CAS  PubMed  Google Scholar 

  8. Baglin I, Mitaine-Offer AC, Nour M, Tan K, Cavé C, Lacaille-Dubois MA (2003) A review of natural and modified betulinic, ursolic and echinocystic acid derivatives as potential antitumor and anti-HIV agents. Mini Rev Med Chem 3(6):525

    Article  CAS  Google Scholar 

  9. Wu J, Li J, Zhu Z, Li J, Huang G, Tang Y, Gao X (2010) Protective effects of echinocystic acid isolated from Gleditsia sinensis Lam. against acute myocardial ischemia. Fitoterapia 81(1):8–10

    Article  CAS  Google Scholar 

  10. Fu SB, Feng X, Meng QF, Cai Q, Sun DA (2018) Two new echinocystic acid derivatives catalyzed by filamentous fungus Gliocladium roseum CGMCC 3.3657. Nat Prod Res. https://doi.org/10.1080/14786419.2018.1477148

  11. Wang H, Wang Q, Xiao SL, Yu F, Ye M, Zheng YX, Zhao CK, Sun DA, Zhang LH, Zhou DM (2013) Elucidation of the pharmacophore of echinocystic acid, a new lead for blocking HCV entry. Eur J Med Chem 64(6):160–168

    Article  CAS  Google Scholar 

  12. Fu SB, Yang JS, Cui JL, Sun DA (2013) Biotransformation of ursolic acid by Syncephalastrum racemosum CGMCC 3.2500 and anti-HCV activity. Fitoterapia 86(7):123–128

    Article  CAS  Google Scholar 

  13. Fu S, Meng Q, Yang J, Tu J, Sun DA (2018) Biocatalysis of ursolic acid by the fungus Gliocladium roseum CGMCC 3.3657 and resulting anti-HCV activity. RSC Adv 8:16400–16405

    Article  CAS  Google Scholar 

  14. Sun DA, Sauriol F, Mamer O, Zamir LO (2001) Reanalysis of the biotransformation of 4(20),11(12)-taxadiene derivati. Can J Chem 79(9):1381–1393

    Article  CAS  Google Scholar 

  15. Bai SP, Dong L, He ZA (2004) A new triterpenoid from Doellingeria scaber. Chin Chem Lett 15(11):1303–1305

    CAS  Google Scholar 

  16. Mimaki Y, Fukushima M, Yokosuka A, Sashida Y, Furuya S, Sakagami H (2001) Triterpene glycosides from the roots of Sanguisorba officinalis. Phytochemistry 57(5):773–779

    Article  CAS  Google Scholar 

  17. Zhang Y, Dewitt DL, Murugesan S, Nair MG (2005) Cyclooxygenase-2 enzyme inhibitory triterpenoids from Picrorhiza kurroa seeds. Life Sci 77(25):3222–3230

    Article  CAS  Google Scholar 

  18. Yu F, Wang Q, Wang H, Si LL, Liu JX, Han X, Xiao SL, Zhang LH, Zhou DM (2016) Synthesis and biological evaluation of echinocystic acid derivatives as HCV entry inhibitors. Chin Chem Lett 27(5):711–713

    Article  Google Scholar 

  19. Georgatza D, Gorgogietas VA, Kylindri P, Charalambous MC, Papadopoulou KK, Hayes JM, Psarra A-MG (2016) The triterpene echinocystic acid and its 3-O-glucoside derivative are revealed as potent and selective glucocorticoid receptor agonists. Int J Biochem Cell Biol 79:277–287

    Article  CAS  Google Scholar 

  20. Xu SH, Wang WW, Zhang C, Liu XF, Yu BY, Zhang J (2017) Site-selective oxidation of unactivated C–H sp 3 bonds of oleanane triterpenes by Streptomyces griseus ATCC 13273. Tetrahedron 73(21):3086–3092

    Article  CAS  Google Scholar 

  21. Firat Z, Demirci F, Demirci B, Baser KHC, Firat Z, Demirci F, Demirci B, Baser KHC, Firat Z, Demirci F (2017) Microbial transformation of α-bisabolol towards bioactive metabolites. J Biotechnol 256:S52–S53

    Article  Google Scholar 

  22. Yang C, Liu Y, Zhu Y, Yong Z (2017) Microbial transformation of intracellular dissolved organic matter from Microcystis aeruginosa and its effect on the binding of pyrene under oxic and anoxic conditions. Environ Sci Pollut Res Int 24(7):1–11

    Google Scholar 

  23. Zhang M, Liu J, Chen R, Zhao J, Xie K, Chen D, Feng K, Dai J (2017) Two Furanharzianones with 4/7/5/6/5 ring system from microbial transformation of harzianone. Org Lett 19(5):1168–1171

    Article  CAS  Google Scholar 

  24. Chen P, Lei Y, Wu Z, Li S, Bai Z, Yan X, Wang N, Liang N, Li H (2016) A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid. Sci Rep 6:20400

    Article  CAS  Google Scholar 

  25. Yu H, Zhu B, Zhan Y (2017) Microbial transformation of artemisinin by Aspergillus terreus. Bioresour Bioproc 4(1):33–37

    Article  Google Scholar 

  26. Zhang C, Xu SH, Ma BL, Wang WW, Yu BY, Zhang J (2017) New derivatives of ursolic acid through the biotransformation by Bacillus megaterium CGMCC 1.1741 as inhibitors on nitric oxide production. Bioorg Med Chem Lett 27(11):2575

    Article  CAS  Google Scholar 

  27. Xu SH, Zhang C, Wang WW, Yu BY, Zhang J (2017) Site-selective biotransformation of ursane triterpenes by Streptomyces griseus ATCC 13273. RSC Adv 7(34):20754–20759

    Article  CAS  Google Scholar 

  28. Feng X, Li DP, Luan J, Chu ZY.(2014) Microbial transformation of the anti-diabetic agent corosolic acid. Nat Prod Res 28:1879–1886

    Article  CAS  Google Scholar 

  29. Wang H, Yu F, Peng Y, Wang Q, Han X, Xu R, Zhou X, Wan C, Fan Z, Jiao P (2015) Synthesis and biological evaluation of ring A and/or C expansion and opening echinocystic acid derivatives for anti-HCV entry inhibitors. Eur J Med Chem 102:594–599

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by The National Natural Sciences Foundation of China (No. 21462057, 21172267), Guizhou Science and Technology Department (QKHLH-2014-7555).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaobin Fu or Di-an Sun.

Ethics declarations

Conflict of interest

There was no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Feng, X. & Sun, Da. Microbe-mediate transformation of echinocystic acid by whole cells of filamentous fungus Cunninghamella blakesleana CGMCC 3.910. Mol Biol Rep 45, 2795–2800 (2018). https://doi.org/10.1007/s11033-018-4357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4357-7

Keywords

Navigation