Abstract
We report the development of nine polymorphic microsatellite markers for Corallina officinalis (Linnaeus, 1758), a calcifying intertidal red alga and important ecosystem engineer spread along the North East Atlantic. Characterization and analysis of loci were made using 15 individuals of C. officinalis from populations in Iceland and the UK. The average number of alleles per locus was 3.78 (range 2–6) and mean of gene diversity was 0.58 (range 0.38–0.77). The set of microsatellites developed here will provide a useful molecular tool for population genetic and conservation studies.
This is a preview of subscription content, access via your institution.
References
Guiry MD, Guiry GM (2017) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed 12 Dec 2017
Walker RH, Brodie J, Russell S, Irvine LM, Orfanidis S (2009) Biodiversity of coralline algae in the Northeastern Atlantic. J Phycol 297:287–297. https://doi.org/10.1111/j.1529-8817.2008.0637
Broom JE, Hart DR, Farr TJ, Nelson WA, Neill KF, Harvey AS, Woelkerling WJ (2008) Utility of psbA and nSSU for phylogenetic reconstruction in the Corallinales based on New Zealand taxa. Mol Phylogenet Evol 46:958–973. https://doi.org/10.1016/j.ympev.2007.12.016
Mccoy SJ, Kamenos NA (2015) Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. J Phycol 51:6–24. https://doi.org/10.1111/jpy.12262
Braga JC, Aguirre J (2001) Coralline algal assemblages in upper Neogene reef and temperate carbonates in Southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 175:27–41. https://doi.org/10.1016/S0031-0182(01)00384-4
Abbey E, Webster JM, Braga JC, Sugihara K, Wallace C, Iryu Y, Potts D, Done T, Camoin G, Seard C (2011) Variation in deglacial coralgal assemblages and their paleoenvironmental significance: IODP Expedition 310, “Tahiti Sea Level”. Glob Planet Change 76:1–15. https://doi.org/10.1016/j.gloplacha.2010.11.005
Aguirre J, Braga JC, De Reviers B, Woelkerling WJ (2012) Reassessment of Lemoine’s newly discovered types of fossil corallines (Corallinales, Rhodophyta) preserved at the Muséum national d’histoire naturelle, Paris. Cryptogam Algol 33:289–326. https://doi.org/10.7872/crya.v33.iss3.2012.289
Novak V, Santodomingo N, Rösler A, Martino E, Braga JC, Taylor PD, Johnson KG, Renema W (2013) Environmental reconstruction of a late Burdigalian (Miocene) patch reef in deltaic deposits (East Kalimantan, Indonesia). Palaeogeogr Palaeoclimatol Palaeoecol 374:110–122. https://doi.org/10.1016/j.palaeo.2013.01.009
Brodie J, Walker RH, Williamson C, Irvine LM (2013) Epitypification and redescription of Corallina officinalis L., the type of the genus, and C. elongata Ellis et Solander (Corallinales, Rhodophyta). Cryptogam Algol 34:49–56. https://doi.org/10.7872/crya.v34.iss1.2013.49
Williamson CJ, Walker RH, Robba L, Yesson C, Russell S, Irvine LM, Brodie J (2015) Toward resolution of species diversity and distribution in the calcified red algal genera Corallina and Ellisolandia (Corallinales, Rhodophyta). Phycologia 54:2–11. https://doi.org/10.2216/14-024.1
Williamson CJ, Perkins R, Voller M, Yallop ML, Brodie J (2017) The regulation of coralline algal physiology, an in situ study of Corallina officinalis (Corallinales, Rhodophyta). Biogeosciences. https://doi.org/10.5194/bg-2017-135
Pardo C, Peña V, Barreiro R, Bárbara I (2015) A molecular and morphological study of Corallina sensu lato (Corallinales, Rhodophyta) in the Atlantic Iberian Peninsula. Cryptogam Algol 36:31–54. https://doi.org/10.7872/crya.v36.iss1.2015.31
Nelson WA (2009) Calcified macroalgae–critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787–801. https://doi.org/10.1071/MF08335
van der Heijden LH, Kamenos NA (2015) Reviews and syntheses: calculating the global contribution of coralline algae to total carbon burial. Biogeosciences 12:6429–6441. https://doi.org/10.5194/bg-12-6429-2015
Kim KM, Yang EC, Kim JH, Nelson WA, Yoon HS (2015) Complete mitochondrial genome of a rhodolith, Sporolithon durum (Sporolithales, Rhodophyta). Mitochondrial DNA 26:155–156. https://doi.org/10.3109/19401736.2013.819500
Robba L, Russell SJ, Barker GL, Brodie J (2006) Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 93:1101–1108. https://doi.org/10.3732/ajb.93.8.1101
Hind KR, Saunders GW (2013) A molecular phylogenetic study of the tribe Corallineae (Corallinales, Rhodophyta) with an assessment of genus-level taxonomic features and descriptions of novel genera. J Phycol 49:103–114. https://doi.org/10.1111/jpy.12019
Hind KR, Gabrielson PW, Lindstrom SC, Martone PT (2014) Misleading morphologies and the importance of sequencing type specimens for resolving coralline taxonomy (Corallinales, Rhodophyta): Pachyarthron cretaceum is Corallina officinalis. J Phycol 50:760–764. https://doi.org/10.1111/jpy.12205
Corallinales, Rhodophyta (2016) Complete mitochondrial genome of the geniculate calcified red alga, Corallina officinalis. Mitochondrial DNA Part B 1:326–327. https://doi.org/10.1080/23802359.2016.1172048
Yesson C, Jackson A, Russell S et al (2018) SNPs reveal geographical population structure of Corallina officinalis (Corallinaceae, Rhodophyta). Eur J Phycol. https://doi.org/10.1080/09670262.2017.1402373
Glynn WH (2018) Population structure in the red calcifying alga Corallina officinalis in the North Atlantic: implications in a time of global climate change. Thesis project for the MRes in Biodiversity, Evolution and Conservation at University College London
Toonen RJ, Hughes S (2001) Increased throughput for fragment analysis on an ABI Prism® 377 automated sequencer using a membrane comb and STRand software. Biotechniques 31:1320–1325
Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2013) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier
Raymond M, Rousset F (1995) GENEPOP (version 4.2): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249
Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 23:40–69. https://doi.org/10.1111/mec.12581
Acknowledgements
This research was funded by projects UID/Multi/04326/2013, IF/01413/2014/CP1217/CT0004 from the Fundação para a Ciência e Tecnologia (FCT-MEC, Portugal) and RDF from University of Portsmouth and further supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology and the National Research Foundation and a scholarship from the South African National Research Foundation (NRF). We thank C.D. McQuaid and C. Yesson for their comments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Informed consent
For this type of study, informed consent is not required.
Research involving human and animal participants
This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Tavares, A.I., Nicastro, K.R., Kolzenburg, R. et al. Isolation and characterization of nine microsatellite markers for the red alga Corallina officinalis. Mol Biol Rep 45, 2791–2794 (2018). https://doi.org/10.1007/s11033-018-4353-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-018-4353-y