Skip to main content
Log in

Expression of the miR-190 family is increased under DDT exposure in vivo and in vitro

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A non-genotoxic insecticide dichlorodiphenyltrichloroethane (DDT), can affect mRNA and microRNA levels, however, its precise mechanism of action remains poorly understood. Using in silico methods we found that the rat miR-190 family is potentially regulated by CAR and ER receptors activated by DDT. We showed that exposure to DDT results in a dose- and organ-dependent increase in the expression of miR-190a, -190b in the liver, uterus, ovaries and mammary gland of female Wistar rats. Additionally, we demonstrate a decrease in protein product level of Tp53inp1, the target gene of these microRNAs, in the rat uterus. It is known that miR-190 is probably regulated by ER in humans, thus we measured the level of miR-190a, -190b in primary cultures of malignant and normal human endometrial cells treated with different doses of DDT. We detected an increase in miR-190b level in normal endometrial cells under DDT exposure. Thus, our results indicate that DDT exposure lead to change in the expression of oncogenic miR-190 family and its target gene Tp53inp1 which may be due to activation of CAR and ER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

miR:

MicroRNA

COP:

Chlororganic pesticide

EDC:

Endocrine disrupting chemical

DDT:

Dichlorodiphenyltrichloroethane

ER:

Estrogen receptor

CAR:

Constitutive androstane receptor

PBREM:

Phenobarbital-responsive enhancer module

ERE:

Estrogen response element

nt:

Nucleotide

References

  1. Tilghman SL, Bratton MR, Segar HC et al (2012) Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PLoS ONE 7(3):e32754

    Article  CAS  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  Google Scholar 

  3. Farazi TA, Hoell JI, Morozov P et al (2013) MicroRNAs in human cancer. Adv Exp Med Biol 774:1–20

    Article  CAS  Google Scholar 

  4. Yanokura M, Banno K, Kobayashi Y et al (2010) MicroRNA and endometrial cancer: roles of small RNAs in human tumors and clinical applications (review). Oncol Lett 1(6):935–940

    Article  CAS  Google Scholar 

  5. Su Z, Yang Z, Xu Y et al (2015) MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6(11):8474–8490

    Article  Google Scholar 

  6. Zhang J, Ma L (2012) MicroRNA control of epithelial–mesenchymal transition and metastasis. Cancer Metastasis Rev 31(3–4):653–662

    Article  CAS  Google Scholar 

  7. Valastyan S, Weinberg RA (2011) Roles for microRNAs in the regulation of cell adhesion molecules. J Cell Sci 124(Pt 7):999–1006

    Article  CAS  Google Scholar 

  8. Chen T (2010) The role of microRNA in chemical carcinogenesis. J Environ Sci Health C 28(2):89–124

    Article  CAS  Google Scholar 

  9. Vrijens K, Bollati V, Nawrot TS (2015) MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. Environ Health Perspect 123(5):399–411

    Article  CAS  Google Scholar 

  10. Pogribny IP, Beland FA, Rusyn I (2016) The role of microRNAs in the development and progression of chemical-associated cancers. Toxicol Appl Pharmacol 312:3–10

    Article  CAS  Google Scholar 

  11. Shen YL, Jiang YG, Greenlee AR et al (2009) MicroRNA expression profiles and miR-10a target in anti-benzo[a]pyrene-7,8-diol-9,10-epoxide-transformed human 16HBE cells. Biomed Environ Sci 22(1):14–21

    Article  CAS  Google Scholar 

  12. Pogribny IP, Muskhelishvili L, Tryndyak VP et al (2009) The tumor-promoting activity of 2-acetylaminofluorene is associated with disruption of the p53 signaling pathway and the balance between apoptosis and cell proliferation. Toxicol Appl Pharmacol 235(3):305–311

    Article  CAS  Google Scholar 

  13. Hernández LG, van Steeg H, Luijten M et al (2009) Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutat Res 682(2–3):94–109

    Article  Google Scholar 

  14. Longnecker MP, Rogan WJ, Lucier G (1997) The human health effects of DDT (dichlorodiphenyltrichloroethane) and PCBs (polychlorinated biphenyls) and an overview of organochlorines in public health. Ann Rev Public Health 18:211–244

    Article  CAS  Google Scholar 

  15. Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3–4):90–100

    Article  CAS  Google Scholar 

  16. Ejaz S, Akram W, Lim CW et al (2004) Endocrine disrupting pesticides: a leading cause of cancer among rural people in Pakistan. Exp Oncol 26(2):98–105

    CAS  PubMed  Google Scholar 

  17. Xu X, Dailey AB, Talbott EO et al (2010) Associations of serum concentrations of organochlorine pesticides with breast cancer and prostate cancer in U.S. adults. Environ Health Perspect 118(1):60–66

    Article  CAS  Google Scholar 

  18. Turusov VS, Day NE, Tomatis L et al (1973) Tumors in CF-1 mice exposed for six consecutive generations to DDT. J Natl Cancer Inst 51(3):983–997

    Article  CAS  Google Scholar 

  19. Turusov V, Rakitsky V, Tomatis L (2002) Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ Health Perspect 110(2):125–138

    Article  CAS  Google Scholar 

  20. Jaga K (2000) What are the implications of the interaction between DDT and estrogen receptors in the body? Med Hypotheses 54(1):18–25

    Article  CAS  Google Scholar 

  21. Kiyosawa N, Kwekel JC, Burgoon LD et al (2008) Species-specific regulation of PXR/CAR/ER-target genes in the mouse and rat liver elicited by o, p’-DDT. BMC Genom 9:487

    Article  Google Scholar 

  22. Robison AK, Schmidt WA, Stancel GM (1985) Estrogenic activity of DDT: estrogen-receptor profiles and the responses of individual uterine cell types following o,p’-DDT administration. J Toxicol Environ Health 16(3–4):493–508

    Article  CAS  Google Scholar 

  23. Konno Y, Negishi M, Kodama S (2008) The roles of nuclear receptors CAR and PXR in hepatic energy metabolism. Drug Metab Pharmacokinet 23(1):8–13

    Article  CAS  Google Scholar 

  24. Klinčić D, Herceg RS, Matek SM, Grzunov J, Dukić B (2014) Polychlorinated biphenyls and organochlorine pesticides in human milk samples from two regions in Croatia. Environ Toxicol Pharmacol 37(2):543–552

    Article  Google Scholar 

  25. Cohn BA, Wolff MS, Cirillo PM, Sholtz RI (2007) DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect 115(10):1406–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalinina TS, Kononchuk VV, Gulyaeva LF (2017) Expression of hormonal carcinogenesis genes and related regulatory microRNAs in uterus and ovaries of DDT-treated female rats. Biochemistry 82(10):1118–1128

    CAS  PubMed  Google Scholar 

  27. Chu HW, Cheng CW, Chou WC et al (2014) A novel estrogen receptor-microRNA 190a-PAR-1-pathway regulates breast cancer progression, a finding initially suggested by genome-wide analysis of loci associated with lymph-node metastasis. Hum Mol Genet 23(2):355–367

    Article  CAS  Google Scholar 

  28. Koval OA, Sakaeva GR, Fomin AS et al (2015) Sensitivity of endometrial cancer cells from primary human tumor samples to new potential anticancer peptide lactaptin. J Cancer Res Ther 11(2):345–351

    Article  CAS  Google Scholar 

  29. Uphoff CC, Drexler HG (2002) Comparative PCR analysis for detection of mycoplasma infections in continuous cell lines. In Vitro Cell Dev Biol Anim 38(2):79–85

    Article  CAS  Google Scholar 

  30. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  Google Scholar 

  31. Cramer EM, Shao Y, Wang Y et al (2014) miR-190 is upregulated in Epstein-Barr Virus type I latency and modulates cellular mRNAs involved in cell survival and viral reactivation. Virology 464–465:184–195

    Article  Google Scholar 

  32. Słomczyńska M (2008) Xenoestrogens: mechanisms of action and some detection studies. Pol J Vet Sci 11(3):263–269

    PubMed  Google Scholar 

  33. Wallace BD, Redinbo MR (2013) Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective. Drug Metab Rev 45(1):79–100

    Article  CAS  Google Scholar 

  34. Almog N, Briggs C, Beheshti A et al (2013) Transcriptional changes induced by the tumor dormancy-associated miR-190. Transcription 4(4):177–191

    Article  Google Scholar 

  35. Beezhold K, Liu J, Kan H et al (2011) miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. Toxicol Sci 123(2):411–420

    Article  CAS  Google Scholar 

  36. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucl Acids Res 39(16):6845–6853

    Article  CAS  Google Scholar 

  37. Belletti B, Baldassarre G (2012) New light on p27kip1 in breast cancer. Cell Cycle 11(19):3701–3702

    Article  CAS  Google Scholar 

  38. Jiang PH, Motoo Y, Garcia S et al (2006) Down-expression of tumor protein p53-induced nuclear protein 1 in human gastric cancer. World J Gastroenterol 12(5):691–696

    Article  CAS  Google Scholar 

  39. Jiang F, Liu T, He Y et al (2011) MiR-125b promotes proliferation and migration of type II endometrial carcinoma cells through targeting TP53INP1 tumor suppressor in vitro and in vivo. BMC Cancer 11:425

    Article  CAS  Google Scholar 

  40. McCampbell AS, Mittelstadt ML, Dere R et al (2016) Loss of p27 associated with risk for endometrial carcinoma arising in the setting of obesity. Curr Mol Med 16(3):252–265

    Article  CAS  Google Scholar 

  41. Cizeron-Clairac G, Lallemand F, Vacher S et al (2015) MiR-190b, the highest up-regulated miR in ERα-positive compared to ERα-negative breast tumors, a new biomarker in breast cancers? BMC Cancer 15:499

    Article  Google Scholar 

  42. Ziel HK (1982) Estrogen’s role in endometrial cancer. Obstet Gynecol 60(4):509–515

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Russian Science Foundation, Project # 15-15-30012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana S. Kalinina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experimental procedures were approved by the Bioethics Committee of the Institute of Molecular Biology and Biophysics and carried out in accordance with Directive 2010/63/EU.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 216 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, T.S., Kononchuk, V.V., Ovchinnikov, V.Y. et al. Expression of the miR-190 family is increased under DDT exposure in vivo and in vitro. Mol Biol Rep 45, 1937–1945 (2018). https://doi.org/10.1007/s11033-018-4343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4343-0

Keywords