Skip to main content

Advertisement

Log in

Whole exome sequencing of breast cancer (TNBC) cases from India: association of MSH6 and BRIP1 variants with TNBC risk and oxidative DNA damage

  • Original article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Whole exome sequencing in triple negative breast cancer cases (n = 8) and targeted sequencing in healthy controls (n = 48) revealed BRIP1 rs552752779 (MAF: 75% vs. 6.25%, OR 45.00, 95% CI 9.43–243.32), ERBB2 rs527779103 (MAF: 62.5% vs. 7.29%, OR 21.19, 95% CI 5.11–94.32), ERCC2 rs121913016 (MAF: 56.25% vs. 7.29%, OR 16.34, 95% CI 4.02–70.41), MSH6 rs2020912 (MAF: 56.25% vs. 1.04%, OR 122.13, 95% CI 12.29–2985.48) as risk factors for triple negative breast cancer. Construction of classification and regression tree followed by smart pruning identified MSH6 and BRIP1 variants as the major determinants of TNBC (Triple Negative Breast Cancer) risk. Except for ERBB2, all other genes regulate DNA repair and chromosomal integrity. In TNBC cases, two likely pathogenic variations i.e. NCOR1 rs562300336 and PIM1 rs746748226 were observed at frequencies of 18.75% and 12.5%, respectively. Among the 24 variants of unknown significance, MMP9 rs199676062, SYNE1 rs368709678, AURKA rs373550419, ABCC4 rs11568694 have variant allele frequency ≥ 62.5%. These genes regulate metastasis, nuclear modeling, cell cycle and cellular detoxification, respectively. To conclude, aberrations in DNA mismatch repair, nucleotide excision repair or BRCA1 associated genome surveillance mechanism contribute towards triple negative breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TNBC:

Triple negative breast cancer

WES:

Whole exome sequencing

cfDNA:

Cell-free DNA

MAF:

Minor allele frequency

OR:

Odds ratio

dbSNP:

The single nucleotide polymorphism database

MMR:

Miss-match repair

HPLC:

High-performance liquid chromatography

References

  1. Ademuyiwa FO, Tao Y, Luo J et al (2016) Differences in the mutational landscape of triple-negative breast cancer in African Americans and Caucasians. Breast Cancer Res Treat 161:491–499. https://doi.org/10.1007/s10549-016-4062-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vaca-Paniagua F, Alvarez-Gomez RM, Maldonado-Martínez HA et al (2015) Revealing the molecular portrait of triple negative breast tumors in an understudied population through omics analysis of formalin-fixed and paraffin-embedded tissues. PLoS ONE. https://doi.org/10.1371/journal.pone.0126762

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kriegsmann M, Endris V, Wolf T et al (2014) Mutational profiles in triple-negative breast cancer defined by ultradeep multigene sequencing show high rates of PI3K pathway alterations and clinically relevant entity subgroup specific differences. Oncotarget. https://doi.org/10.18632/oncotarget.2481

    Article  PubMed  PubMed Central  Google Scholar 

  4. Banerji S, Cibulskis K, Rangel-Escareno C et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486:405–409. https://doi.org/10.1038/nature11154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar MA, Singh V, Naushad SM et al (2017) Microarray-based SNP genotyping to identify genetic risk factors of triple-negative breast cancer (TNBC) in South Indian population. Mol Cell Biochem 442:1–10. https://doi.org/10.1007/s11010-017-3187-6

    Article  CAS  Google Scholar 

  6. Mayo-De-Las-Casas C, Ibáñez MG, Jordana-Ariza N et al (2017) An update on liquid biopsy analysis for diagnostic and monitoring applications in non-small cell lung cancer. Expert Rev Mol Diagn 18:35–45. https://doi.org/10.1080/14737159.2018.1407243

    Article  CAS  PubMed  Google Scholar 

  7. Li B, Krishnan VG, Mort ME et al (2009) Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25:2744–2750. https://doi.org/10.1093/bioinformatics/btp528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Depristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. https://doi.org/10.1038/ng.806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen B, Thong M, Yunus Z (2012) Biochemical profiling of inborn errors of purine and pyrimidine metabolism by high-performance liquid chromatography: a strategy to improve childhood mortality and morbidity in Malaysian children. Hamdan Med J 5:363. https://doi.org/10.7707/hmj.v5i3.174

    Article  Google Scholar 

  10. Vidotto C, Fousert D, Akkermann M et al (2003) Purine and pyrimidine metabolites in children’s urine. Clin Chim Acta 335:27–32. https://doi.org/10.1016/s0009-8981(03)00291-2

    Article  CAS  PubMed  Google Scholar 

  11. Wen YH, Brogi E, Zeng Z et al (2012) DNA mismatch repair deficiency in breast carcinoma. Am J Surg Pathol 36:1700–1708. https://doi.org/10.1097/pas.0b013e3182627787

    Article  PubMed  Google Scholar 

  12. Ollier M, Radosevic-Robin N, Kwiatkowski F, Ponelle F, Viala S, Privat M, Uhrhammer N, Bernard-Gallon D, Penault-Llorca F, Bignon YJ, Bidet Y (2015) DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition. Am J Cancer Res 5(7):2113–2126

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee E, Levine EA, Franco VI et al (2014) Combined genetic and nutritional risk models of triple negative breast cancer. Nutr Cancer 66:955–963. https://doi.org/10.1080/01635581.2014.932397

    Article  CAS  PubMed  Google Scholar 

  14. Couch FJ, Hart SN, Sharma P et al (2015) Inherited mutations in 17 Breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol 33:304–311. https://doi.org/10.1200/jco.2014.57.1414

    Article  CAS  PubMed  Google Scholar 

  15. Lin P-H, Kuo W-H, Huang A-C et al (2016) Multiple gene sequencing for risk assessment in patients with early-onset or familial breast cancer. Oncotarget. https://doi.org/10.18632/oncotarget.7027

    Article  PubMed  PubMed Central  Google Scholar 

  16. Buys SS, Sandbach JF, Gammon A et al (2017) A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 123:1721–1730. https://doi.org/10.1002/cncr.30498

    Article  CAS  PubMed  Google Scholar 

  17. Ouhtit A, Gupta I, Shaikh Z (2016) BRIP1, a potential candidate gene in development of non-BRCA1/2 breast cancer. Front Biosci 8:289–298

    Article  Google Scholar 

  18. Rump A, Benet-Pages A, Schubert S et al (2016) Identification and functional testing of ERCC2 mutations in a multi-national cohort of patients with familial breast- and ovarian cancer. PLoS Genet. https://doi.org/10.1371/journal.pgen.1006248

    Article  PubMed  PubMed Central  Google Scholar 

  19. Karihtala P, Kauppila S, Soini Y, Arja-Jukkola-Vuorinen (2011) Oxidative stress and counteracting mechanisms in hormone receptor positive, triple-negative and basal-like breast carcinomas. BMC Cancer. https://doi.org/10.1186/1471-2407-11-262

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aravind Kumar.

Ethics declarations

Conflict of interest

None of the authors has a financial or other relationship with other people or organizations that may inappropriately influence this work.

Ethical approval

The study protocol was approved by Institutional Ethical committee of This study was approved by The Institutional ethical committee of Sandor Proteomics Pvt Ltd, Hyderabad, India. (EC/SRP/008/2012, Dated 26.6.12.) This study complied with the ethical principles outlined in the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all the study participants (Cases as well as controls) during their enrollment for the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aravind Kumar, M., Naushad, S.M., Narasimgu, N. et al. Whole exome sequencing of breast cancer (TNBC) cases from India: association of MSH6 and BRIP1 variants with TNBC risk and oxidative DNA damage. Mol Biol Rep 45, 1413–1419 (2018). https://doi.org/10.1007/s11033-018-4307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4307-4

Keywords

Navigation