Skip to main content
Log in

Biodiesel synthesis from Chlorella vulgaris under effect of nitrogen limitation, intensity and quality light: estimation on the based fatty acids profiles

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cultures under nitrogen limitation for Chlorella vulgaris were kept under different light quality (white, blue, yellow and violet) at 70 and 140 µE m−2 s−1; to evaluate the effect on fatty acids profiles and biodiesel quality. The results showed a maximum biomass and cell density at 140 µE m−2 s−1 of: white light (0.69 g L−1 and 6.5 × 106 cells mL−1, respectively) and blue light (0.65 g L−1 and 8.0 × 106 cells mL−1, respectively); compared to violet and yellow light. The chlorophyll concentration (µg mg−1 biomass dry weight) at 70 µE m−2 s−1 were in the order of light: white (25.61) > violet (17.10) > yellow (11.68) > blue (11.40) and, at 140 µE m−2 s−1 were: violet (23.64) > white (10.20) > yellow (9.66) > blue (7.99), suggesting the violet light stimulates the increase of chlorophyll a at higher intensity. The maximum lipid content (% w/w) were present under blue light (43.11), yellow (70.92) and violet (83.87) at 140 µE m−2 s−1. The different wavelengths did not have a negative effect on the quality of the biodiesel, however; violet light presented greater productivity and the indicators such as CFPP were related to the oxidative stability value and low PUFA content, leading biodiesel to good oxidative stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Balasubramanian S, Allen JD, Kanitkar A, Boldor D (2011) Oil extraction from Scenedesmus obliquus using a continuous microwave system—design, optimization, and quality characterization. Bioresour Technol 102(3):3396–3403

    Article  CAS  Google Scholar 

  2. Khoeyi ZA, Seyfabadi J, Ramezanpour Z (2012) Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac Int 20:41–49. https://doi.org/10.1007/s10499-011-9440-1

    Article  CAS  Google Scholar 

  3. Ruiz-Marín A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    Article  Google Scholar 

  4. Lim S, Chu W, Phang S (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322

    Article  CAS  Google Scholar 

  5. De Godos I, Vargas VA, Blanco S, González MC, Soto R, García-Encina PA, Muñoz R (2010) A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol 101(14):5150–5158

    Article  Google Scholar 

  6. Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp.. Bioresour Technol 101:2623–2628

    Article  CAS  Google Scholar 

  7. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biodiesel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  Google Scholar 

  8. Soto-León S, Zazueta-Patrón IE, Piña-Valdez P, Nieves-Soto M, Reyes-Moreno C, Contreras-Andrade I (2014) Tertraselmis suecica lipid extraction: ultrasonic and solvent aided process. Rev Mex Ing Quim 13:723–737

    Google Scholar 

  9. Sanchez-Saavedra MP, Voltolina D (2006) The growth rate, biomass production and composition of Chaetoceros sp. Grown with different light sources. Aquac Eng 35:161–165

    Article  Google Scholar 

  10. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27:631–635

    Article  CAS  Google Scholar 

  11. Liu Z, Wang G, Zhou B (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  CAS  Google Scholar 

  12. Seyfabadi J, Ramezanpour Z, Amini-Khoeyi Z (2011) Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23:721–726

    Article  CAS  Google Scholar 

  13. Romero-Romero CC, Sanchez-Saavedra MP (2016) Effect of light quality on the growth and proximal composition of Amphora sp.. J Appl Phycol. https://doi.org/10.1007/s10811-016-1029-7

    Article  Google Scholar 

  14. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049

    Article  CAS  Google Scholar 

  15. Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  16. Zhang K, Sun B, She X, Zhao F, Cao Y, Ren D, Lu J (2014) Lipid production and composition of fatty acids in Chlorella vulgaris cultured using different methods: photoautotrophic, heterotrophic, and pure and mixed conditions. Ann Microbiol 64:1239–1246

    Article  CAS  Google Scholar 

  17. Mohsenpour SF, Richards B, Willoughby N (2012) Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresour Technol 125:75–81

    Article  CAS  Google Scholar 

  18. Amini-Khoeyi Z, Seyfabadi J, Ramezanpour Z (2012) Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac Int 20:41–49

    Article  CAS  Google Scholar 

  19. Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  Google Scholar 

  20. Das P, Lei W, Aziz SS, Obbard JP (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol 102(4):3883–3887

    Article  CAS  Google Scholar 

  21. You T, Barnett SM (2004) Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem Eng J 19:251–258

    Article  CAS  Google Scholar 

  22. Pilon L, Berberoglu H, Kandilian R (2011) Radiation transfer in photobiological carbon dioxide fixation and fuel production by microalgae. J Quant Spectrosc Radiat Transfer 112:2639–2660

    Article  CAS  Google Scholar 

  23. Atta M, Idris A, Bukhari A, Wahidin S (2013) Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour Technol 148:373–378

    Article  CAS  Google Scholar 

  24. Kim DG, Lee C, Pak SM, Choi YE (2014) Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris. Bioresour Technol 159:240–248

    Article  CAS  Google Scholar 

  25. Korbee N, Figueroa F, Aguilera I (2005) Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J Photochem Photobiol B 80(2):71–78

    Article  CAS  Google Scholar 

  26. Hultberg M, Larsson-Jonsson H, Berstrand KJ, Carlsson AS (2014) Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresour Technol 159:465–467

    Article  CAS  Google Scholar 

  27. Guillard RLL, Ryther JH (1962) Studies on marine planktonic diatoms Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  28. Parsons TR, Maita Y, Carol CM (1984) A manual of chemical and biological method for seawater analysis. Pergamon Press, Oxford

    Google Scholar 

  29. Strickland JDH, Parsons TR (1972) A practical handbook of seawaters analysis. Bull Fish Res Bd Can 167:1–20

    Google Scholar 

  30. Britton G (1985) General carotenoid method. In: Law JH, Rilling HC (eds.) Methods in enzymology. Vol. 111, Academic Press, Cambridge, pp 113–149

    Google Scholar 

  31. Sato N, Murata N (1988) Membrane lipids. In: Sidney P, Colowick NO, Kaplan (eds.) Methods in enzymology, Academic Press, Cambridge, pp 251–259

    Google Scholar 

  32. Vidyashankar S, VenuGopal KS, Swarnalatha GV, Kavitha MD, Chauhan VS, Ravi R, Bansal AK, Singh R, Pande A, Ravishankar GA, Sarada R (2015) Characterization of fatty acids and hydrocarbons of chlorophycean microalgae towards their use as biofuel source. Biomass Bioenergy 77:75–91

    Article  CAS  Google Scholar 

  33. Guldhe A, Singh P, Kumari S, Rawat I, Permaul K, Bux F (2016) Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst. Renew Energy 85:1002–1010

    Article  CAS  Google Scholar 

  34. Nascimento IA, Izabel-Marques SS, Dominguez-Cabanelas IT, Andrade-Pereira S, Isabel-Druzian J, de Souza CO, Vital-Vich D, de Carvalho GC, Nascimento MA (2013) Screening microalgae strains for biodiesel production: lipid productivity an estimation of fuel quality base on fatty acids profiles as selective criteria. Bioenergy Res 6:1–13

    Article  CAS  Google Scholar 

  35. Robles-Heredia JC, Sacramento-Rivero JC, Canedo-López Y, Ruiz-Marín A, Vilchiz-Bravo LE (2015) A multistage gradual nitrogen reduction strategy for increased lipid productivity and nitrogen removal in wastewater using Chlorella vulgaris and Scenedesmus obliquus. Braz J Chem Eng 32(2):335–345

    Article  CAS  Google Scholar 

  36. Hill R (1965) The biochemist’s Green mansions: the photosynthetic electron chain in plants. Essays Biochem 1:121–151

    CAS  PubMed  Google Scholar 

  37. Matthijs HCP, Balke H, Van Hes UM (1995) Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol Bioeng 50:98–107

    Article  Google Scholar 

  38. Pirson A, Kowallik WW (1960) Des blauen und roten Spektralbereiches auf die Zusammensetzung von Chlorella bei Anzucht im Light-Dunkel-Wechsel. Naturwissenschaften 47:476–477

    Article  Google Scholar 

  39. Horst S (1982) The effect of blue light on plant and microorganisms. Photochem Photobiol 35:911–920

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledgement to the members of CAEC in Environmental Engineering and Universidad Autónoma del Carmen (UNACAR) for encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Ruiz-Marin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest, financial or otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez-Fuentes, P., Ruiz-Marin, A. & Canedo-López, Y. Biodiesel synthesis from Chlorella vulgaris under effect of nitrogen limitation, intensity and quality light: estimation on the based fatty acids profiles. Mol Biol Rep 45, 1145–1154 (2018). https://doi.org/10.1007/s11033-018-4266-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4266-9

Keywords

Navigation