Skip to main content
Log in

Molecular insight into the metabolic activities of a protein-rich micro alga, Arthrospira platensis by de novo transcriptome analysis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To gain genetic insights into the protein-rich microalga, the transcriptome of Arthrospira platensis was sequenced using Illumina technology and de novo assembly was carried out. A total of 6023 transcripts were present in the transcriptome among which 4616 transcripts were annotated with specific functions. Gene ontology analysis revealed that the genes are mainly involved in three major functions such as biological (16.19%), cellular (41.47%) and molecular (42.34%) processes. Pathway analysis indicated that majority of genes are involved in amino acid biosynthesis and metabolism which is depicting the protein-rich nature of spirulina. Other major pathways involved are carbohydrate metabolism, lipid metabolism, metabolism of co-factors and vitamins, antioxidant mechanism and metabolism of terpenoids and polyketides. qRT-PCR analysis was performed to confirm the potential antioxidant role of five candidate genes of spirulina in protecting the cells from oxidative stress induced by hydrogen peroxide. Moreover, these results indicated that spirulina is rich in biological resources which could be efficiently used for multiple applications such as carbon dioxide utilization, nitrogen fixation and biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CDD:

Conserved domain database

GO:

Gene ontology

SSR:

Simple sequence repeats

COG:

Cluster of orthologous gene

MDH:

Malate dehydrogenease

PGK:

Phosphoglycerate kinase

PEPC:

Pathways and phosphoenolpyruvate carboxylase

PGM:

Phosphoglucomutase

AGPase:

ADP-glucose pyrophosphorylase

β-AMY:

β-Amylase

O1 6G:

Oligo-1,6-glucosidase

GPase:

Glycogen phosphorylase

FAS:

Fatty acid synthase

TAG:

Triacylglycerol

LPA:

Lysophosphatidic acid

PA:

Phosphatidic acid

DAG:

Diacylglycerol

DGAT:

Diacylglycerol O-acyltransferase

PDAT:

Phospholipid:diacylglycerolacyltransferase

References

  1. Apiradee H, Kalyanee P, Pongsathon P, Patcharaporn D, Matura S, Sanjukta S, Supapon C, Morakot T (2004) The expression of three desaturase genes of Spirulina platensis in Escherichia coli DH5α. Mol Biol Rep 31:177

    Article  CAS  Google Scholar 

  2. Asada K, Yoshikawa K, Takahashi M, Maeda Y, Enmanji K (1975) Superoxide dismutase from a blue-green alga Plectonem aboryanum. J Biol Chem 250:2801–2807

    CAS  PubMed  Google Scholar 

  3. Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions. PLoS ONE 7(9):e42949

    Article  CAS  Google Scholar 

  4. Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74:529–551

    Article  CAS  Google Scholar 

  5. Chan DI, Vogel HJ (2010) Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430:1–19

    Article  CAS  Google Scholar 

  6. Cheng I, Zhang I, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329

    Article  CAS  Google Scholar 

  7. Coesel S, Obornı´k M, Varela J, Falciatore A, Bowler C (2008) Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PLoS ONE 3(8):e2896

    Article  Google Scholar 

  8. Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R (2015) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microbial Biotechnol 8(2):190–209

    Article  CAS  Google Scholar 

  9. Day AM, Brown JD, Taylor SR, Rand JD, Morgan BA, Veal EA (2012) Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival. Mol Cell 45:398–408

    Article  CAS  Google Scholar 

  10. Deponte M (2013) Glutathione catalysis and the reaction mechanisms ofglutathione-dependent enzymes. Biochem Biophys Acta 1830:3217–3266

    Article  CAS  Google Scholar 

  11. El-Baky HHA, El-Baz FK, El-Baroty GS (2007) Enhancement ofantioxidant production in Spirulina plantensis under oxidative stress. Am Eurasian J Sci Res 2:170–179

    Google Scholar 

  12. Fujisawa T, Narikawa R, Okamoto S et al (2010) Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Res 17:85–103

    Article  CAS  Google Scholar 

  13. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function and diseases. Antioxid Redox Signal 15(6):1583–1606

    Article  CAS  Google Scholar 

  14. Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M et al (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS ONE 6(10):e25851

    Article  CAS  Google Scholar 

  15. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  Google Scholar 

  16. Han I, Park HJ, Seong SC, Lee S, Kim IG, Lee MC (2011) Role of transglutaminase 2 in apoptosis induced by hydrogen peroxide in human chondrocytes. J Orthop Res 29:252–257

    Article  CAS  Google Scholar 

  17. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784

    Article  CAS  Google Scholar 

  18. Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    CAS  PubMed  Google Scholar 

  19. Ioki M, Baba M, Nakajima N, Shiraiwa Y, Watanabe MM (2012) Transcriptome analysis of an oil-rich race B strain of Botryococcus braunii (BOT-22) by de novo assembly of pyrosequencing cDNA reads. Bioresour Technol 9:292–296

    Article  Google Scholar 

  20. Jeamton W, Dulsawat S, Laoteng K, Tanticharoen M, Cheevadhanarak S (2011) Phycocyanin promoter of Spirulina platensis controlling heterologous expression in cyanobacteria. J Appl Phycol 23:83

    Article  CAS  Google Scholar 

  21. Kumaresan V, Nizam F, Ravichandran G, Viswanathan K, Palanisamy R, Bhatt P, Arasu MV, Al-Dhabi NA, Mala K, Arockiaraj J (2017) Transcriptome changes of blue-green algae, Arthrospira sp. in response to sulfate stress. Algal Res 23:96–103

    Article  Google Scholar 

  22. Lam MK, Lee KT (2012) Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Appl Energy 94:303–308

    Article  CAS  Google Scholar 

  23. Madkour FF, Kamil AEW, Nasr HS (2012) Production and nutritive value of Spirulina platensis in reduced cost media. Egypt J Aqua Res 38:51–57

    Article  Google Scholar 

  24. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:182–185

    Article  Google Scholar 

  25. Pastori GM, Trippi VS (1992) Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol 33:957–961

    CAS  Google Scholar 

  26. Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genom 12:148

    Article  CAS  Google Scholar 

  27. Sudhakar K, Suresh S, Premalatha M (2011) An overview of CO2 mitigation using algae cultivation technology. Int J Chem Res 3:110–117

    Article  Google Scholar 

  28. Takeda T. Yokota A, Shigeoka S (1995) Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell Physiol 36:1089–1095

    Article  CAS  Google Scholar 

  29. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeumvulgare L.). Theo Appl Gen 106:411–422

    Article  CAS  Google Scholar 

  30. Tongprawhan W, Srinuanpan S, Cheirsilp B (2014) Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid. Bioresour Technol 170:90–99

    Article  CAS  Google Scholar 

  31. Vinay K, Bhatnagar AK, Srivastava JN (2012) Comparative study of different strains of Spirulina platensis (Geiltler) against some human pathogens. J Algal Biomass Util 3:39–45

    Google Scholar 

  32. Wang J, Wang Y, Wang Z, Li L, Qin J, Lai W, Fu Y, Suter PM, Russell RM, Grusak MA, Tang G, Yin S (2008) Vitamin A equivalence of spirulina beta-carotene in Chinese adults as assessed by using a stable-isotope reference method. Am J Clin Nutr 87:1730–1737

    Article  CAS  Google Scholar 

  33. Xia A, Jacob A, Tabassum MR, Hermann C, Murphy JD (2016) Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro and micro-algae. Bioresour Technol 205:118–125

    Article  CAS  Google Scholar 

  34. Zeng X, Danquah MK, Zhang S, Zhang X, Wu M, Chen XD, Ng IS, Jing K, Lu Y (2012) Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chem Eng J 183:192–197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by Selective Excellence Initiative of SRM Institute of Science and Technology under Signature Programs Competition, Criteria for Academic Excellence, SRM Institute of Science and Technology, Kattankulathur Campus. Also, the authors are grateful to the Deanship of Scientific Research, King Saud University for partial funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesu Arockiaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaresan, V., Sannasimuthu, A., Arasu, M.V. et al. Molecular insight into the metabolic activities of a protein-rich micro alga, Arthrospira platensis by de novo transcriptome analysis. Mol Biol Rep 45, 829–838 (2018). https://doi.org/10.1007/s11033-018-4229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4229-1

Keywords

Navigation