Molecular Biology Reports

, Volume 45, Issue 3, pp 389–394 | Cite as

Expression of genes that encode cellular oxidant/antioxidant systems are affected by heat stress

  • Walid S. Habashy
  • Marie C. Milfort
  • Romdhane Rekaya
  • Samuel E. Aggrey
Original Article


Heat stress causes critical molecular dysfunction that affects productivity in chickens. Thus, the purpose of this study was to evaluate the effect of heat stress (HS) on the expression of select genes in the oxidation/antioxidation machinery in the liver of chickens. Chickens at 14 days of age were randomly assigned to two treatment groups and kept under either a constant normal temperature (25 °C) or high temperature (35 °C) in individual cages for 12 days. mRNA expression of Nrf2, oxidants NADPH(NOX): [NOX1, NOX2, NOX3, NOX4, NOX5 and DUOX2], and antioxidants [SOD1, CAT, GR, GPx1, NQO1] in the liver were analyzed at 1 and 12 days post-HS. We show that, HS changes the mRNA expression of oxidants thereby increasing cellular reactive oxygen species (ROS). Additionally, persistent HS up-regulates SOD which converts superoxides to hydrogen peroxide. We further demonstrated the dynamic relationship between catalase, GSH peroxidase (GPx) and NADPH under both acute and chronic heat stress. The pentose phosphate pathway could be important under HS since it generates NADPH which serves as a cofactor for GPx. Also, methionine, a precursor of cysteine has been shown to have reducing properties and thereby makes for an alternative fuel for redox processes. Genes in the ROS and antioxidant generation pathways may provide insight into nutritional intervention strategies, especially the use of methionine and/or cysteine when birds are suffering from heat stress.


Heat stress NADPH oxidases Glutathione Glutathione peroxidase Catalase Cysteine 



Walid Habashy was supported by the Missions sector of the Egyptian Ministry of Higher Education.

Supplementary material

11033_2018_4173_MOESM1_ESM.docx (33 kb)
Supplementary material 1 (DOCX 32 KB)


  1. 1.
    Sun X, Zhang H, Sheikhahmadi A, Wang Y, Jiao H, Lin H, Song Z (2015) Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). Int J Biometeorol 59:127–135CrossRefPubMedGoogle Scholar
  2. 2.
    Stevens BR (2010) Amino acid transport by epithelial membranes. In: Gerencser GA (ed) Epithelial transport physiology. Humana Press, New York, pp 353–378CrossRefGoogle Scholar
  3. 3.
    Lin H, Decuypere E, Buyse J (2006) Acute heat stress induces oxidative stress in broiler chickens. Comp Biochem Physiol A 144:11–17CrossRefGoogle Scholar
  4. 4.
    Azad MAK, Kikusato M, Maekawa T, Shirakawa H, Toyomizu M (2010) Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comp Biochem Physio A 155:401–406CrossRefGoogle Scholar
  5. 5.
    Jin XL, Wang K, Liu L, Liu HY, Zhao FQ, Liu JX (2016) Nuclear factor-like factor 2-antioxidant response element signaling activation by tert-butylhydroquinone attenuates acute heat stress in bovine mammary epithelial cells. J Dairy Sci 99(11):9094–9103CrossRefPubMedGoogle Scholar
  6. 6.
    Chan K, Han XD, Kan YW (2001) An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Nati Acad Sci USA 98:4611–4616CrossRefGoogle Scholar
  7. 7.
    Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275:16023–16029CrossRefPubMedGoogle Scholar
  8. 8.
    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 15:335–344CrossRefGoogle Scholar
  9. 9.
    Kuhn H, Thiele BJ (1999) The diversity of the lipoxygenase family: many sequence data but little information on biological significance. FEBS Lett 449:7–11CrossRefPubMedGoogle Scholar
  10. 10.
    Silverman ES, Drazen JM (1999) The biology of 5-lipoxygenase: function, structure, and regulatory mechanisms. Proc Assoc Am Physicians 111:525–536CrossRefPubMedGoogle Scholar
  11. 11.
    Chung HY, Baek BS, Song SH, Kim MS, Huh JI, Shim KH, Kim KW, Lee KH (1997) Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha) 20:127–140CrossRefGoogle Scholar
  12. 12.
    Dhawan V (2014) Reactive oxygen and nitrogen species: general considerations. In: Ganguly NK et al (eds.) Studies on respiratory disorders, oxidative stress in applied basic research and clinical practice. Springer, New York, pp 27–47Google Scholar
  13. 13.
    Velayutham M, Zweier JL (2013) Cardiac ischemia and reperfusion. In: Villamena FA (ed) Molecular basis of oxidative stress: chemistry, mechanisms, and disease pathogenesis. Wiley, pp 311–328.
  14. 14.
    Al-Abrash AA, Al-Quobaili FA, Al-Akhras GN (2000) Catalase evaluation in different human diseases associated with oxidative stress. Saudi Med J 21:826–830PubMedGoogle Scholar
  15. 15.
    Halliwell B (2001) Free radicals and other reactive species in Disease. In: Nature Encyclopedia of Life Sciences. Nature Publishing Group, London, pp 1–7Google Scholar
  16. 16.
    Ng CF, Schafer FQ, Buettner GR, Rodgers VG (2007) The rate of cellular hydrogen peroxide removal shows dependency on GSH: mathematical insight into in vivo H2O2 and GPx concentrations. Free Radic Res 41(11):1201–1211CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95CrossRefPubMedGoogle Scholar
  18. 18.
    Barzilai A, Yamamoto K (2004) DNA damage responses to oxidative stress. DNA Repair 3(8–9):1109–11115CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA (2000) Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle- related events in Alzheimer disease. J Neuropathol Exp Neurol 275:880–888CrossRefGoogle Scholar
  20. 20.
    Wei YZ, Zhang J, Townsend DM, Tew KD (2015) Oxidative stress, redox regulation and disease of cellular differentiation. Biochim Biophys Acta 1850:1607–1621CrossRefGoogle Scholar
  21. 21.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  22. 22.
    Quinn MT (2013) NADPH oxidases: structure and function. In: Villamena FA (ed) Molecular basis of oxidative stress: chemistry, mechanisms, and disease pathogenesis. Wiley, pp 137–178.
  23. 23.
    Jiang JX, Török NJ (2014) NADPH oxidases in chronic liver diseases. Adv Hepatol 2014:742931. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bánfi B, Clark RA, Steger K, Krause KH (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278(6):3510–3513CrossRefPubMedGoogle Scholar
  25. 25.
    Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279(44):46065–46072CrossRefPubMedGoogle Scholar
  26. 26.
    Panday A, Sahoo MK, Osorio D, Batra S (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12:5–23CrossRefPubMedGoogle Scholar
  27. 27.
    Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H (2005) The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem 280(24):23328–23339CrossRefPubMedGoogle Scholar
  28. 28.
    Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL (2003) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17(11):1502–1504CrossRefPubMedGoogle Scholar
  29. 29.
    Tirone F, Cox JA (2007) NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin. FEBS Lett 581(6):1202–1208CrossRefPubMedGoogle Scholar
  30. 30.
    Bánfi B, Molnár G, Maturana A, Steger K, Hegedûs B, Demaurex N, Krause KH (2001) A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276:37594–37601CrossRefPubMedGoogle Scholar
  31. 31.
    Gu ZT, Li L, Wu F, Zhao P, Yang H, Lu YS, Geng Y, Zhao M, Su L (2015) Heat stress induced apoptosis is triggered by transcription-independent p53, Ca2+ dyshomeostasis and subsequent Bax mitochondrial translocation. Sci Rep 5:11497–11521CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lin H, Du R, Gu XH, Li FC, Zhang ZY (2000) A study on the plasma biochemical indices of heat-stressed broilers. Asian-Aust J Anim Sci 13(9):1210–1218CrossRefGoogle Scholar
  33. 33.
    Hu Y, Rosen DG, Zhou Y, Feng L, Yang G, Liu J, Huang P (2005) Mitochondrial manganese-superoxide dismutase expression in ovarian cancer. J Biol Chem 47:39485–39492CrossRefGoogle Scholar
  34. 34.
    Sedeek M, Nasrallah R, Touyz RM, Hébert RL (2013) NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 24(10):1512–1518CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kim HJ, Yun J, Lee J, Hong H, Jeong J, Kim E, Bae YS, Lee KJ (2011) SUMO1 attenuates stress-induced ROS generation by inhibiting NADPH oxidase 2. Biochem Biophys Res Commun 410(3):555–562CrossRefPubMedGoogle Scholar
  36. 36.
    Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33(3):337–349CrossRefPubMedGoogle Scholar
  37. 37.
    Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212CrossRefPubMedGoogle Scholar
  38. 38.
    Croteau D, Bohr V (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 272::25409–25412CrossRefGoogle Scholar
  39. 39.
    Manna SK, Zhang HJ, Yan T, Oberley LW, Aggarwal BB (1998) Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1. J Biol Chem 273:13245–13254CrossRefPubMedGoogle Scholar
  40. 40.
    Amstad P, Peskin A, Shah G, Mirault ME, Moret R, Zbinden I, Cerutti P (1991) The balance between Cu, Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress. Biochemistry 30:9305–9313CrossRefPubMedGoogle Scholar
  41. 41.
    Min JY, Lim SO, Jung G (2010) Down regulation of catalase by reactive oxygen species via hypermethylation of CpG island II on the catalase promoter. FEBS Lett 584:2427–2432CrossRefPubMedGoogle Scholar
  42. 42.
    Quan X, Lim S, Jung G (2011) Reactive oxygen species downregulate catalase expression via methylation of a CpG Island in the Oct-1 promoter. FEBS Lett 585:3436–3441CrossRefPubMedGoogle Scholar
  43. 43.
    Islam KN, Kayanoki Y, Kaneto H, Suzuki K, Asahi M, Fujii J, Taniguchi N (1997) TGF-beta triggers oxidative modifications and enhances apoptosis in HIT cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radic Biol Med 22(6):1007–1017CrossRefPubMedGoogle Scholar
  44. 44.
    Baud O, Greene AE, Li J, Wang H, Volpe JJ, Rosenberg PA (2004) Glutathione peroxidase–catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci 24(7):1531–1540CrossRefPubMedGoogle Scholar
  45. 45.
    Cao C, Leng Y, Kufe D (2003) Catalase activity is regulated by c-Abl and Arg in the oxidative stress response. J Biol Chem 278(32):29667–29675CrossRefPubMedGoogle Scholar
  46. 46.
    Kuehe A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, Gallinat S, Terstegen L, Lucius R, Hildebrand J, Zamboni N (2015) Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell 59:359–371CrossRefGoogle Scholar
  47. 47.
    Niu WN, Yadav PK, Adamec J, Banerjee R (2015) S-glutathionylation enhances human cystathione β-synthase activity under oxidative stress conditions. Antioxid Redox Signal 22(5):350–361CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Habashy WS, Milfort MC, Adomako K, Attia YA, Rekaya R, Aggrey SE (2017) Effect of heat stress on amino acid digestibility and transporters in meat-type chickens. Poult Sci 96(7):2312–2319. CrossRefPubMedGoogle Scholar
  49. 49.
    Eriksson S, Prigge JR, Talago EA, Arner ESJ, Schmidt EE (2015) Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver. Nat Commun 6:6479–6487CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci USA 93:14960–14965CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cheng JZ, Sharma R, Yang Y, Singhal SS, Sharma A, Saini MK, Singh SV, Zimniak P, Awasthi S, Awasthi YC (2001) Accelerated metabolism and exclusion of 4-hydroxynonenal through induction of RLIP76 and hGST5.8 is an early adaptive response of cells to heat and oxidative stress. J Biol Chem 276(44):41213–41223CrossRefPubMedGoogle Scholar
  52. 52.
    Li J, Calkins MJ, Johnson DA, Johnson JA (2007) Role of Nrf2-dependent ARE-driven antioxidant pathway in neuroprotection. Methods Mol Biol 399:67–78CrossRefPubMedGoogle Scholar
  53. 53.
    Adomako K, Habashy WS, Milfort M, Fuller A, Rekaya R, Aggrey SE (2016) Transcriptome analysis of genes in the protein biosynthesis and ubiquitin-proteosome pathways in meat-type chickens under heat stress. In: Proceedings of the 25th World’s Poultry Congress September 5–9, 2016; Beijing, China 4– 0011. (Abstr.)Google Scholar
  54. 54.
    Gu ZT, Wang H, Li L, Liu YS, Deng XB, Huo SF, Yuan FF, Liu ZF, Tong HS, Su L (2014) Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell. Sci Rep 4:4469CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Li L, Tan H, Gu Z, Liu Z, Geng Y, Liu Y (2014) Heat stress induces apoptosis through a Ca2+-mediated mitochondrial apoptotic pathway in human umbilical vein endothelial cells. PLoS ONE 9(12):e111083. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hampton MB, Orrenius S (1997) Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett 414:552–556CrossRefPubMedGoogle Scholar
  57. 57.
    Robert G, Puissant A, Dufies M, Marchetti S, Jacquel A, Cluzeau T, Colosetti P, Belhacene N, Kahle P, Da Costa CA, Luciano F, Checler F, Auberger P (2012) The caspase 6 derived N-terminal fragment of DJ-1 promotes apoptosis via increased ROS production. Cell Death Differ 19(11):1769–1778CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Walid S. Habashy
    • 1
    • 2
  • Marie C. Milfort
    • 1
  • Romdhane Rekaya
    • 3
  • Samuel E. Aggrey
    • 1
  1. 1.NutriGenomics Laboratory, Department of Poultry ScienceUniversity of GeorgiaAthensUSA
  2. 2.Department of Animal and Poultry ProductionDamanhour UniversityDamanhourEgypt
  3. 3.Department of Animal and Dairy SciencesUniversity of GeorgiaAthensUSA

Personalised recommendations