Molecular Biology Reports

, Volume 45, Issue 3, pp 347–351 | Cite as

Acute myeloid leukemia with translocation (1;21)

  • Ameer Hamza
  • Uqba Khan
  • Sidrah Khawar
  • Daniel Snower
Mini Review


Advancement in genetic and molecular biology techniques has greatly helped our understanding of various diseases, especially hematological disorders. We describe a case of primary myelofibrosis (PMF) that transformed into acute myeloid leukemia with a very rare and unusual genetic translocation of (1;21). There are only five reported cases of this translocation in acute myeloid leukemia (AML) or myelodysplastic syndrome but none of them transformed from PMF. This case not only highlights the importance of rare genetic translocations but also provides the natural history of the disease and its poor prognosis. To the best of our knowledge our patient is the first reported case of AML transformed from PMF to have this unique translocation of (1;21).


Acute myeloid leukemia Primary myelofibrosis Translocation (1;21) AML transformation 



All authors have contributed significantly, and are in agreement with the content of the manuscript.

Compliance with ethical standards

Conflict of interest

All authors have no conflict of interest.

Ethical approval

Formal consent was obtained from the Hospital ethical committee and the manuscript is in accordance with the recommendations of Institutional Review Board of St. John, Hospital and Medical Center, Detroit, MI, USA. The manuscript complies with institutional, national, and international guidelines for using human subject/tissue.


  1. 1.
    Webb DK, Passmore SJ, Hann IM, Harrison G, Wheatley K, Chessells JM (2002) Results of treatment of children with refractory anaemia with excess blasts (RAEB) and RAEB in transformation (RAEBt) in Great Britain 1990-99. Br J Haematol 117(1):33–39CrossRefPubMedGoogle Scholar
  2. 2.
    Hromas R, Shopnick R, Jumean HG, Bowers C, Varella-Garcia M, Richkind K (2000) A novel syndrome of radiation-associated acute myeloid leukemia involving AML1 gene translocations. Blood 95(12):4011–4013PubMedGoogle Scholar
  3. 3.
    Roulston D, Espinosa R 3rd, Nucifora G, Larson RA, Le Beau MM, Rowley JD (1998) CBFA2(AML1) translocations with novel partner chromosomes in myeloid leukemias: association with prior therapy. Blood 92(8):2879–2885PubMedGoogle Scholar
  4. 4.
    Stevens-Kroef MJ, Schoenmakers EF, van Kraaij M, Huys E, Vermeulen S, van der Reijden B, van Kessel AG (2006) Identification of truncated RUNX1 and RUNX1-PRDM16 fusion transcripts in a case of t(1;21)(p36;q22)-positive therapy-related AML. Leukemia 20(6):1187–1189CrossRefPubMedGoogle Scholar
  5. 5.
    Sakai I, Tamura T, Narumi H, Uchida N, Yakushijin Y, Hato T, Fujita S, Yasukawa M (2005) Novel RUNX1-PRDM16 fusion transcripts in a patient with acute myeloid leukemia showing t(1;21)(p36;q22). Genes Chromosom Cancer 44(3):265–270CrossRefPubMedGoogle Scholar
  6. 6.
    Mochizuki N, Shimizu S, Nagasawa T, Tanaka H, Taniwaki M, Yokota J, Morishita K (2000) A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood 96(9):3209–3214PubMedGoogle Scholar
  7. 7.
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (2017) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. International Agency for Research on Cancer, LyonGoogle Scholar
  8. 8.
    Huang L, Abruzzo LV, Valbuena JR, Medeiros LJ, Lin P (2006) Acute myeloid leukemia associated with variant t(8;21) detected by conventional cytogenetic and molecular studies: a report of four cases and review of the literature. Am J Clin Pathol 125(2):267–272CrossRefPubMedGoogle Scholar
  9. 9.
    Aguilo F, Avagyan S, Labar A et al (2011) Prdm16 is a physiologic regulator of hematopoietic stem cells. Blood 117(19):5057–5066. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shiba N, Ichikawa H, Taki T, Park MJ, Jo A, Mitani S, Kobayashi T, Shimada A, Sotomatsu M, Arakawa H, Adachi S, Tawa A, Horibe K, Tsuchida M, Hanada R, Tsukimoto I, Hayashi Y (2013) NUP98-NSD1 gene fusion and its related gene expression signature are strongly associated with a poor prognosis in pediatric acute myeloid leukemia. Genes Chromosom Cancer 52(7):683–693. PubMedGoogle Scholar
  11. 11.
    de Rooij JD, Hollink IH, Arentsen-Peters ST, van Galen JF, Berna Beverloo H, Baruchel A, Trka J, Reinhardt D, Sonneveld E, Zimmermann M, Alonzo TA, Pieters R, Meshinchi S, van den Heuvel-Eibrink MM, Zwaan CM (2013) NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia 27(12):2280–2288. CrossRefPubMedGoogle Scholar
  12. 12.
    Yamato G, Yamaguchi H, Handa H, Shiba N, Kawamura M, Wakita S, Inokuchi K, Hara Y, Ohki K, Okubo J, Park MJ, Sotomatsu M, Arakawa H, Hayashi Y (2017) Clinical features and prognostic impact of PRDM16 expression in adult acute myeloid leukemia. Genes Chromosom Cancer 56(11):800–809. CrossRefPubMedGoogle Scholar
  13. 13.
    Jo A, Mitani S, Shiba N, Hayashi Y, Hara Y, Takahashi H, Tsukimoto I, Tawa A, Horibe K, Tomizawa D, Taga T, Adachi S, Yoshida T, Ichikawa H (2015) High expression of EVI1 and MEL1 is a compelling poor prognostic marker of pediatric AML. Leukemia 29(5):1076–1083. CrossRefPubMedGoogle Scholar
  14. 14.
    Shiba N, Ohki K, Kobayashi T, Hara Y, Yamato G, Tanoshima R, Ichikawa H, Tomizawa D, Park MJ, Shimada A, Sotomatsu M, Arakawa H, Horibe K, Adachi S, Taga T, Tawa A, Hayashi Y (2016) High PRDM16 expression identifies a prognostic subgroup of pediatric acute myeloid leukaemia correlated to FLT3-ITD, KMT2A-PTD, and NUP98-NSD1: the results of the Japanese Paediatric Leukaemia/Lymphoma Study Group AML-05 trial. Br J Haematol 172(4):581–591. CrossRefPubMedGoogle Scholar
  15. 15.
    Bae E, Park CJ, Cho YU, Seo EJ, Chi HS, Jang S, Lee KH, Lee JH, Lee JH, Suh JJ, Im HJ (2013) Differential diagnosis of myelofibrosis based on WHO 2008 criteria: acute panmyelosis with myelofibrosis, acute megakaryoblastic leukemia with myelofibrosis, primary myelofibrosis and myelodysplastic syndrome with myelofibrosis. Int J Lab Hematol 35(6):629–636. CrossRefPubMedGoogle Scholar
  16. 16.
    Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E, Talmant P, Tichelli A, Hermouet S, Skoda RC (2007) Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 110(1):375–379CrossRefPubMedGoogle Scholar
  17. 17.
    Slovak ML, Bedell V, Popplewell L, Arber DA, Schoch C, Slater R (2002) 21q22 balanced chromosome aberrations in therapy-related hematopoietic disorders: report from an international workshop. Genes Chromosom Cancer 33:379–394CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologySt. John Hospital and Medical CenterDetroitUSA
  2. 2.Department of Hematology/OncologySt. John Hospital and Medical CenterDetroitUSA

Personalised recommendations