Skip to main content
Log in

Development of microsatellite markers for the carnivorous plant Genlisea aurea (Lentibulariaceae) using genomics data of NGS

  • Short Cormmunication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Genlisea aurea A.St.-Hil. is a carnivorous plant endemic species to Brazil in the Lentibulariaceae family. Very few studies have addressed the genetic structure and conservation status of G. aurea and the Lentibulariaceae. Microsatellites markers are advantageous tools that can be employed to predict the vulnerability of Lentibulariaceae species. Therefore, the development of molecular markers focusing the population analyses of Genlisea for future genetic studies and conservation actions are essential. Thus, we developed simple sequence repeats (SSRs) based on in silico analyses of G. aurea draft genome assembly. We characterized 40 individuals from several populations and identified 12 loci that were polymorphic, with heterozygosity between 0.123 and 0.650. We demonstrated that the G. aurea SSR markers work cross-species in Genlisea filiformis, G. repens, G. tuberosa and G. violacea. These markers will be important for future population, phylogeographic and conservation studies in G. aurea and other Genlisea species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Fleischmann A (2012) Monograph of the genus Genlisea. Redfern Natural History Productions, Poole, Dorset, England

    Google Scholar 

  2. Miranda VFO, Menezes CG, Silva SR et al (2015) Lentibulariaceae. In: List. Espécies da Flora do Bras. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB146

  3. BFG—The Brazil Flora Group (2015) Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguésia 66:1085–1113. https://doi.org/10.1590/2175-7860201566411

    Article  Google Scholar 

  4. Klink CA, Machado RB (2005) A conservação do Cerrado brasileiro. Megadiversidade 1:147–155

    Google Scholar 

  5. Myers N, Myers N, Mittermeier R et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  6. Fundação SOS Mata Atlântica (2016) Atlas dos Remanescentes Florestais da Mata Atlântica período 2014–2015

  7. Płachno BJ, Kozieradzka-Kiszkurno M, Swia̧tek P, Darnowski DW (2008) Prey attraction in carnivorous Genlisea (Lentibulariaceae). Acta Biol Cracoviensia Ser Bot 50:87–94

    Google Scholar 

  8. Darwin C (1899) Insectivorous plants, 2nd edn. D. Appleton, New York

    Book  Google Scholar 

  9. Lloyd FE (1942) The carnivorous plants. Chonica Bot Co. https://doi.org/10.5962/bhl.title.5965

  10. Juniper B, Robins R, Joel D (1989) The carnivorous plants. Academic Press, Oxford

    Google Scholar 

  11. Barthlott W, Porembski S, Fischer E, Gemmel B (1998) First protozoa-trapping plant found. Nature 392:447

    Article  CAS  Google Scholar 

  12. Wołowski K, Piątek J, Płachno B (2011) Algae and stomatocysts associated with carnivorous plants. First report of chrysophyte stomatocysts from Virginia. USA Phycologia 50:511–519. https://doi.org/10.2216/10-94.1

    Article  Google Scholar 

  13. Adamec L (2008) Soil fertilization enhances growth of the carnivorous plant Genlisea violacea. Biologia (Bratisl) 63:201–203. https://doi.org/10.2478/s11756-008-0023-1

    CAS  Google Scholar 

  14. Greilhuber J, Borsch T, Müller K et al (2006) Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol 8:770–777. https://doi.org/10.1055/s-2006-924101

    Article  CAS  PubMed  Google Scholar 

  15. Leushkin EV, Sutormin RA, Nabieva ER et al (2013) The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genomics 14:476. https://doi.org/10.1186/1471-2164-14-476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fleischmann A, Michael TP, Rivadavia F et al (2014) Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann Bot 114:1651–1663. https://doi.org/10.1093/aob/mcu189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clivati D, Gitzendanner MA, Hilsdorf AWS et al (2012) Microsatellite markers developed for Utricularia reniformis (Lentibulariaceae). Am J Bot 99:e375–e378. https://doi.org/10.3732/ajb.1200080

    Article  PubMed  Google Scholar 

  18. Miller MP, Knaus BJ, Mullins TD, Haig SM (2013) SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end illumina high-throughput DNA sequencing data. J Herededity 104:881–885. https://doi.org/10.1093/jhered/est056

    Article  CAS  Google Scholar 

  19. Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. https://doi.org/10.1186/1471-2105-13-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lodhi MA, Ye G-N, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars andVitis species. Plant Mol Biol Report 12:6–13. https://doi.org/10.1007/BF02668658

    Article  CAS  Google Scholar 

  21. Peakall R, Smouse P (2012) GenAlEx 6. 5: genetic analysis in Excel. Population genetic soft- ware for teaching and research—an update. Bioinformatics 1:6–8. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  22. Rousset F (2008) GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  23. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank all colleagues in the Laboratory of Plant Systematics (Unesp/ FCAV) for the fruitful discussions that also were important for the article improvement. We are also grateful to CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for the fellowships of the author Y.C.A.D. and CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico for the fellowship of the author V.F.O.M. (Bolsa de Produtividade—Proc. #309040/2014-0). The collecting permit was ICMBio/MMA/SISBIO #48516.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor F. O. Miranda.

Ethics declarations

Conflict of interest

The author declares there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aranguren-Díaz, Y.C., Varani, A.M., Michael, T.P. et al. Development of microsatellite markers for the carnivorous plant Genlisea aurea (Lentibulariaceae) using genomics data of NGS. Mol Biol Rep 45, 57–61 (2018). https://doi.org/10.1007/s11033-017-4140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-017-4140-1

Keywords

Navigation