Skip to main content

Advertisement

Log in

Real-time detection of BRAF V600E mutation from archival hairy cell leukemia FFPE tissue by nanopore sequencing

  • Original Paper
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The MinION is a miniaturized high-throughput next generation sequencing platform of novel conception. The use of nucleic acids derived from formalin-fixed paraffin-embedded samples is highly desirable, but their adoption for molecular assays is hurdled by the high degree of fragmentation and by the chemical-induced mutations stemming from the fixation protocols. In order to investigate the suitability of MinION sequencing on formalin-fixed paraffin-embedded samples, the presence and frequency of BRAF c.1799T > A mutation was investigated in two archival tissue specimens of Hairy cell leukemia and Hairy cell leukemia Variant. Despite the poor quality of the starting DNA, BRAF mutation was successfully detected in the Hairy cell leukemia sample with around 50% of the reads obtained within 2 h of the sequencing start. Notably, the mutational burden of the Hairy cell leukemia sample as derived from nanopore sequencing proved to be comparable to a sensitive method for the detection of point mutations, namely the Digital PCR, using a validated assay. Nanopore sequencing can be adopted for targeted sequencing of genetic lesions on critical DNA samples such as those extracted from archival routine formalin-fixed paraffin-embedded samples. This result let speculating about the possibility that the nanopore sequencing could be trustably adopted for the real-time targeted sequencing of genetic lesions. Our report opens the window for the adoption of nanopore sequencing in molecular pathology for research and diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Norris AL, Workman RE, Fan Y, Eshleman JR, Timp W (2016) Nanopore sequencing detects structural variants in cancer. Cancer Biol Ther 17(3):246–253. https://doi.org/10.1080/15384047.2016.1139236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wei S, Williams Z (2015) Rapid short-read sequencing and aneuploidy detection using MinION nanopore technology. Genetics 202(1):37–44. https://doi.org/10.1534/genetics.115.182311

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ip CL, Loose M, Tyson JR, de Cesare M, Brown BL, Jain M, Leggett RM, Eccles DA, Zalunin V, Urban JM, Piazza P, Bowden RJ, Paten B, Mwaigwisya S, Batty EM, Simpson JT, Snutch TP, Birney E, Buck D, Goodwin S, Jansen HJ, O’Grady J, Olsen HE (2015) MinION analysis and reference consortium. MinION analysis and reference consortium: phase 1 data release and analysis. F1000 Res 4:1075. https://doi.org/10.12688/f1000research.7201.1

    Google Scholar 

  4. Cherukuri Y, Janga SC (2016) Benchmarking of de novo assembly algorithms for nanopore data reveals optimal performance of OLC approaches. BMC Genomics 17(Suppl 7):507. https://doi.org/10.1186/s12864-016-2895-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hedegaard J, Thorsen K, Lund MK, Hein AM, Hamilton-Dutoit SJ, Vang S, Nordentoft I, Birkenkamp-Demtröder K, Kruhøffer M, Hager H, Knudsen B, Andersen CL, Sørensen KD, Pedersen JS, Ørntoft TF, Dyrskjøt L (2014) Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS ONE 9(5):e98187. https://doi.org/10.1371/journal.pone.0098187

    Article  PubMed  PubMed Central  Google Scholar 

  6. Swerdlow SH, Campo E, Harris NL, et al (2008) WHO classification of tumors of haematopoietic and lymphoid tissues. In: Bosman FT, Jaffe ES, Lakhani SR, OHgaki H (eds), World Health Organization Classification of tumors, Lyon, pp 188–193

    Google Scholar 

  7. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127(20):2375–2390. https://doi.org/10.1182/blood-2016-01-643569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, Pucciarini A, Bigerna B, Pacini R, Wells VA, Sportoletti P, Pettirossi V, Mannucci R, Elliott O, Liso A, Ambrosetti A, Pulsoni A, Forconi F, Trentin L, Semenzato G, Inghirami G, Capponi M, Di Raimondo F, Patti C, Arcaini L, Musto P, Pileri S, Haferlach C, Schnittger S, Pizzolo G, Foà R, Farinelli L, Haferlach T, Pasqualucci L, Rabadan R, Falini B (2011) BRAF mutations in hairy-cell leukemia. N Engl J Med 364(24):2305–2315. https://doi.org/10.1056/NEJMoa1014209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verma S, Greaves WO, Ravandi F, Reddy N, Bueso-Ramos CE, O’Brien S, Thomas DA, Kantarjian H, Medeiros LJ, Luthra R, Patel KP (2012) Rapid detection and quantitation of BRAF mutations in hairy cell leukemia using a sensitive pyrosequencing assay. Am J Clin Pathol 138(1):153–156. https://doi.org/10.1309/AJCPL0OPXI9LZITV

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vitali C, Bassani C, Chiodoni C, Fellini E, Guarnotta C. Miotti S, Sangaletti S, Fuligni F, De Cecco L, Piccaluga PP, Colombo MP, Tripodo C (2015) SOCS2 controls proliferation and stemness of hematopoietic cells under stress conditions and its deregulation marks unfavorable acute leukemias. Cancer Res 75(11):2387–2399. https://doi.org/10.1158/0008-5472.CAN-14-3625

    Article  CAS  PubMed  Google Scholar 

  11. Willmore-Payne C, Holden JA, Tripp S, Layfield LJ (2005) Human malignant melanoma: detection of BRAF- and c-kit-activating mutations by high-resolution amplicon melting analysis. Hum Pathol 36(5):486–493

    Article  CAS  PubMed  Google Scholar 

  12. Loman NJ, Quinlan AR (2014) Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics 30(23):3399–3401. https://doi.org/10.1093/bioinformatics/btu555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44(W1):W3–W10. https://doi.org/10.1093/nar/gkw343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamy PJ, Castan F, Lozano N, Montélion C, Audran P, Bibeau F, Roques S, Montels F, Laberenne AC (2015) Next-generation genotyping by digital PCR to detect and quantify the BRAF V600E mutation in melanoma biopsies. J Mol Diagn 17(4):366–373. https://doi.org/10.1016/j.jmoldx.2015.02.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by AIRC (Italian Association for Cancer Research) [Grant Numbers 12162, 15999].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Arancio.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2017_4133_MOESM1_ESM.jpg

Online resource 1 Cumulative 2D basecalled yield versus the sequencing time using DNA extracted from archival Formalin Fixed Paraffin Embedded (FFPE) specimens: tissue sample 1, of Hairy cell leukemia variant, HCL-v. (JPG 30 KB)

11033_2017_4133_MOESM2_ESM.jpg

Online resource 2 Cumulative 2D basecalled yield versus the sequencing time using DNA extracted from archival Formalin Fixed Paraffin Embedded (FFPE) specimens: tissue sample 2, of Hairy cell leukemia, HCL. (JPG 35 KB)

11033_2017_4133_MOESM3_ESM.jpg

Online resource 3 All sequences have a length of about 250 nucleotides with a mean quality score of about 8 for HCL-v. (JPG 31 KB)

11033_2017_4133_MOESM4_ESM.jpg

Online resource 4 All sequences have a length of about 250 nucleotides with a mean quality score of about 7 for HCL. (JPG 36 KB)

Online resource 5 The total of successful reads was 139 for HCL-v. (JPG 78 KB)

Online resource 6 The total of successful reads was1327 for HCL. (JPG 79 KB)

Online resource 7 The genotype info key obtained through FreeBayes analysis is reported. (JPG 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacca, D., Cancila, V., Gulino, A. et al. Real-time detection of BRAF V600E mutation from archival hairy cell leukemia FFPE tissue by nanopore sequencing. Mol Biol Rep 45, 1–7 (2018). https://doi.org/10.1007/s11033-017-4133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-017-4133-0

Keywords

Navigation